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Figure 1: We use a deep learning based approach to predict whether a selected element in a mobile UI screenshot will be
perceived by users as tappable, based on pixels only instead of view hierarchies required by previous work. To help designers
better understand model predictions and to provide more actionable design feedback than predictions alone, we additionally
use ML interpretability techniques to help explain the output of our model. We use XRAI to highlight areas in the input
screenshot that most strongly influence the tappability prediction for the selected region, and use k-Nearest Neighbors to
present the most similar mobile UIs from the dataset with opposing influences on tappability perception.

ABSTRACT
UI designers often correct false affordances and improve the dis-
coverability of features when users have trouble determining if
elements are tappable. We contribute a novel system that models
the perceived tappability of mobile UI elements with a vision-based
deep neural network and helps provide design insights with dataset-
level and instance-level explanations of model predictions. Our
system retrieves designs from similar mobile UI examples from our
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dataset using the latent space of our model. We also contribute
a novel use of an interpretability algorithm, XRAI, to generate a
heatmap of UI elements that contribute to a given tappability predic-
tion. Through several examples, we show how our system can help
automate elements of UI usability analysis and provide insights for
designers to iterate their designs. In addition, we share findings
from an exploratory evaluation with professional designers to learn
how AI-based tools can aid UI design and evaluation for tappability
issues.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting design and evaluation methods; HCI design and eval-
uation methods.
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1 INTRODUCTION
Tapping is a fundamental gesture in mobile User Interfaces (UIs).
However, because of the highly varied styles of mobile UIs, users
can have difficulty telling if UI elements are tappable [37]. This
harms the usability of applications, e.g., when false affordances
suggest an item is tappable when it is not; or when the design of a
new feature limits its discoverability.

UI designers and User Experience (UX) researchers traditionally
run user studies to evaluate the usability of their designs. While
these studies can provide actionable feedback and lead to signif-
icant design insights, they are often costly and time-consuming
to conduct. Recent works have applied Deep Learning (DL) tech-
niques to predict whether users will correctly estimate if mobile
UI elements are tappable [37] and predict user engagement with
mobile UI animations [42]. These automated approaches can help
designers gain quick insights into the usability of their applications,
but lack the design guidance and explanations that can be gained
from controlled user studies. In addition, many automated tools
rely on a functional mobile application or UIs with detailed specifi-
cations, such as view hierarchies, meaning that they may not be
able to produce usable results on mockups. Yet, gaining feedback
in the early stages of design is crucial.

The goal of this work is to produce a model that faithfully approx-
imates the perception of real users for rapid, automated tappability
evaluations, and a system which provides explanations of its pre-
dictions that offer insight for improving designs. To gain a basis
for understanding tappability perception at scale, we create a new
dataset of crowdworkers’ estimates of the tappability of UI elements
in thousands of mobile UI screenshots from the RICO dataset [11].
As shown in previous work [37], human perceptions of tappability
can vary significantly. To account for this, our new dataset includes
5 crowdworkers’ labels for each UI element, by which we can more
reliably estimate user perceptions at scale. We use this dataset
to train a purely vision-based deep neural network that, given a
screenshot and a selected region of interest, predicts the perceived
tappability of the selected UI element. This allows designers to
rapidly assess how users may perceive elements of a mobile UI
design, whether or not it is implemented in an application.

We take an important step further beyond tappability predic-
tion by drawing upon techniques in Machine Learning (ML) inter-
pretability and Explainable Artificial Intelligence (XAI) to explain
our model’s predictions in two ways [34]. We provide a local expla-
nation which highlights regions in the input screenshot, indicating
areas the model considers most important to the tappability predic-
tion for a given element.We provide a global explanationwhich uses
the latent space of our model to find contrasting nearest-neighbor
examples in our source dataset, allowing users to discover patterns

in visually similar UIs that have opposing influences on tappability
perception. To evaluate our model and its explanation outputs, we
share an in-depth analysis of the behavior of our model using ran-
dom examples from our source dataset, and conduct an exploratory
evaluation to seek feedback from professional UI/UX designers.

Specifically, this paper contributes:
• A new dataset collecting tappability labels from multiple
crowdworkers per example on thousands of mobile applica-
tion screenshots1. This extends previous work [37] to better
address human uncertainty in tappability perception;

• A vision-based deep neural network that predicts the per-
ceived tappability of selected UI element(s) in a mobile UI
screenshot by only relying on pixels. Our model is capable of
examining UI designs that are not fully specified (e.g., mock-
ups). This significantly extends prior work since it enables
a broader set of applications, e.g., to produce feedback for
early-stage designs;

• A novel method for eliciting explanations of tappability pre-
dictions from our model by annotating the screen under in-
spection, and by surfacing similar examples from the dataset
that have opposing influences on tappability perception;

• An in-depth analysis ofmodel behavior on randomly selected
examples from an evaluation dataset, and an exploratory
evaluation with 13 professional UI/UX designers, fromwhich
we distill initial insights into how an AI-based tool can assist
designers.

2 RELATEDWORK
Our work builds on three primary areas: automated tools which
assist UI designers in exploring and evaluating UIs; automated tools
which assist in evaluating the usability of UIs; and algorithms and
methods for interpreting the predictions of deep neural networks.

2.1 Data-Driven UI Design and Exploration
The HCI community has produced many research artifacts that
help designers create UIs through the collection and use of large-
scale UI datasets [27]. Datasets such as ERICA [13] and RICO [11]
have enabled the creation of numerous data-driven systems in this
domain. While the vast size of RICO has made it attractive for
data-driven applications in research, it is known to have significant
label noise [26]. Many works add annotations to RICO or take
additional cleaning steps, e.g., ENRICO, which organizes RICO into
design topics [24], and RICOclean which relabels icon elements
in the original dataset [44]. Our work contributes a dataset that
augments a cleaned subset of RICO with annotations from multiple
crowdworkers predicting the tappability of various UI elements.

Designers benefit from viewing selections of varied UI design
examples to serve as inspiration in the design process [38]. Gallery
DC uses a neural network to tag elements in mobile UI screen-
shots, presenting them in a gallery to help designers explore a
large set of UI element examples [7]. Other works help designers
retrieve examples from datasets like RICO, e.g., from hand-drawn
sketches [20], low-fidelity wireframes [9], and text-annotated lay-
out information [2, 18, 25]. We also use the latent space of a deep

1We release our dataset publicly at https://github.com/google-research/google-
research/tree/master/taperception.
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neural network for UI retrieval. However, our model is trained on
the perception of human raters, rather than to reconstruct UI lay-
outs. This means that retrieved examples are similar in how they are
perceived by humans to be tappable, rather than in visual similarity
alone. In addition, our model uses the raw pixels of a mobile UI
as input, allowing it to capture more detailed visual features than
layouts.

2.2 Computationally Mediated UI Evaluation
Because of the cost and time involved in running controlled user
studies, many systems have emerged which use heuristics, data-
driven techniques, or crowdsourcing to evaluate UIs more rapidly.
An early example is CogTool, which predicts task completion time
for skilled users [3]. Other tools detect underlying usability hurdles
by analyzing UI layouts to find rendering errors [8], or by using
crowdsourcing to find issues in interaction traces [12].

Other approaches detect usability issues by modeling visual
perception and highlighting mismatches with designers’ expecta-
tions [23]. Deep neural networks have been used to create attention
maps of visual designs [4, 14]. Our work is most similar to Tap-
Shoe, which uses a deep neural network to model users’ tappability
perceptions of mobile UI elements [37]. We extend this work by
introducing a purely vision-based neural network, which enables
several new applications due to its ability to run on mockups as well
as functional applications. In addition, a key limitation of many
automated evaluation tools is that designers must rely on their
own judgment to decide how to modify their designs to improve
evaluation results. Our work takes a significant step beyond prior
work by using ML interpretability techniques to give designers
more actionable information than predictions alone. Specifically,
our system highlights the regions that influence our model’s tappa-
bility predictions, and it retrieves relevant, contrasting UI examples
for design inspiration.

2.3 Interpreting and Explaining Deep Neural
Network Predictions

Deep neural networks are considered “black box” models since they
often have toomany parameters to be easily understood, and are not
considered to be inherently interpretable [28]. Emergent work in
the ML community has produced several algorithms and techniques
that can help highlight the particular inputs to a neural network
that influence its predictions. Some methods use backpropagation
to attribute pixels in an input image [36], use the convolutional fea-
tures of vision models [35], or aggregate and merge highly salient
pixels into regions [21]. Other methods approximate a more in-
terpretable, linear model to annotate what input features are near
decision boundaries [32], or combinatorially perturb the input to
determine which of its features are most influential [30]. We modify
the XRAI algorithm [21] to attribute input features which influence
our model’s tappability predictions.

Other methods use the training dataset to provide external con-
text that can help explain model predictions. Awell-known example
is to use concept vectors, which can detect the presence of learned
“concepts” (e.g., “stripes”, “wheels”, or “clouds” in images) in a model
prediction [22], or identify important features across a dataset [16].

Figure 2: The type distribution for the 18,667 labeled UI ele-
ments. Blue and white splits show the proportion of leaf and
inner elements in the view hierarchy.

In our work, we use the latent space of our model to retrieve simi-
lar examples from our dataset, a known technique for describing
model predictions by using other examples [31]. We split retrieved
UIs into contrasting examples [5] by their tappability prediction.
This exposes designers to similar UI elements with differing ef-
fects on perception, a technique based on the variation theory of
learning [10].

3 CROWDSOURCING PERCEIVED
TAPPABILITY FROM SCREENSHOTS

Similar to [37], we perform a tappability study on a large set of
UI elements in Android mobile app screens. The raters are given a
screenshot from the screen set with one of the elements highlighted,
and indicate whether the UI element is tappable or not. Each UI
element is labeled by 5 different raters. Each worker completed up
to 90 UI elements, with a median of 30.

We collect 18667 unique UI elements from 3218 screens from the
RICO dataset [11]. In the view hierarchy of each screen, we select
up to five unique clickable and non-clickable elements for labeling.
Similar to [44], we asked crowdworkers to discard examples whose
bounding boxes were not aligned with underlying UI elements.
The same filter rules are applied as [37]: we (1) choose top-level
clickable elements starting from leaves and, (2) avoid choosing the
children of already-chosen non-clickable elements.

There are 24 different types of collected elements, 77% of which
are leaves in their corresponding view hierarchy trees (Figure 2).
By analyzing the labels and the screens, we notice that some UI ele-
ments are labeled with high agreement, but others are not (Table 1).
For 44.4% of UI elements, 5 raters agreed unanimously. However,
24.1% of UI elements were ambiguous to raters, i.e., at most 3 agreed
on a label. Nonetheless, as each element is inspected by multiple
raters, our dataset has more precise labels about human tappability
perception than prior work, which is desirable for machine learning
tasks and data analysis. Our dataset also reveals UI elements that
are indeed ambiguous, for future analysis. For model training in
this work, we randomly split the dataset into 80% of the UI elements
for training, 10% for validation to tune hyperparameters, and 10%
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Table 1: Agreement of tappability for the 18,667 labeled UI
elements.

# of workers for agreement # of UI elements ratio

3-agreement 4508 24.1%
4-agreement 5872 31.5%
5-agreement 8287 44.4%

for testing. We release our dataset publicly on github: https://github.
com/google-research/google-research/tree/master/taperception.

4 MODELING PERCEIVED TAPPABILITY
FROM IMAGES

Since the applications in our dataset use many UI frameworks and
design styles, the patterns persistent in this data can be generalized
to predict the tappability of elements in many kinds of mobile UIs.
In this section, we describe how we use our dataset to train a Con-
volutional Neural Network (CNN) model for tappability prediction.
The problem statement for our model is: given an input screenshot
and region of interest (a rectangular area within the input screen-
shot), predict whether or not users will perceive the indicated UI
element as tappable or not tappable.

Our CNN model is purely vision-based, which significantly dif-
fers from prior work in tappability prediction [37], and provides
several advantages. While earlier tappability prediction models
required multiple feature types as input (e.g., a screenshot and a se-
lected element’s Android View type, text content, and its intended
tappability), our model only uses screenshot pixels as input. This
significantly broadens the set of applications our model may be
used for, such as UIs that are not fully-specified. For example, de-
signers may be able to use our model to evaluate iterations in earlier
design stages since it can operate on visually realistic mockups.
However, since our model does not directly capture text, element
type, or intended clickability information from input UIs, the model
from Swearngin et al. [37] may have advantages in contexts where
non-visual signifiers (e.g., text content) are used by designers to
explicitly indicate tappability. Since our vision-based model does
not rely on platform-specific inputs (i.e., element types), it can be
fine-tuned for platform-agnostic applications. This also makes it
easier to adapt our model to other domains in future work, such as
emergent datasets of iOS applications [41], or other downstream
tasks, e.g., predicting accessibility barriers [45].

Our model’s inputs are specified as follows. Let 𝐼 ∈ Rℎ×𝑤×3

denote the pixel values of a UI screenshot, where ℎ and𝑤 are the
screen height and width, and 3 is the number of channels (i.e.,
RGB). Let (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛) and (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 ) denote the top-left and
bottom-right corner coordinates of a target UI element bounding
box respectively.

A naive implementation of using CNNs for learning tappability
is to crop the target element’s pixels from 𝐼 and feed them to a
CNN. However, this discards important contextual information in
the screen, making it difficult to learn an effective model. Instead,
we feed the entire RGB screenshot to the model along an additional
mask channel in the input. For a given element, we first create
a binary mask 𝑀 ∈ {0, 1}ℎ×𝑤 , using 𝑖 and 𝑗 as row and column

indices, respectively:

𝑀𝑖 𝑗 =

{
1, if 𝑦𝑚𝑖𝑛 <= 𝑖 < 𝑦𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 <= 𝑗 < 𝑥𝑚𝑎𝑥

0, otherwise

In other words, the entries corresponding to the target element’s
pixels are 1’s and the others are 0’s in the binary mask. We then
concatenate 𝐼 and𝑀 along the channel dimension to form the input
to the model: 𝐼 ′ = [𝐼 , 𝑀] of shape [ℎ,𝑤, 4]. To the model, 𝐼 provides
pixel information of the whole screen, while𝑀 indicates the screen
area for which the model should predict tappability (Figure 1).

Specifically, our model is a Resnet-18 [17], modified to accept a
larger input image with a dimension of 960 by 540 (to accommodate
mobile UI screenshots) along with the corresponding binary mask.
Themodel outputs softmax probabilities for two classes: tappable, or
not tappable. We train our model on the training set by minimizing
cross-entropy loss, using Stochastic Gradient Descent with Nesterov
momentum, with a learning rate of 0.05 and a batch size of 1024, for
1500 epochs. Our learning rate decayed by an order of magnitude
(dividing by 10), after epochs 100, 500, 1000, and 1300. We evaluated
how well our model predicted user perceptions of the tappability
of UI elements with our test set. Our model achieved a precision of
91.54% and recall of 80.23% with a decision threshold of 50%, and
AUC of 0.9030.

To compare the performance of our model to previous work in
tappability prediction, we replicated the model from Swearngin et
al. [37] and benchmarked this model on our new dataset in two
separate configurations: by using all of its input features (screenshot
pixels, region pixels, component text, component type, and intended
tappability), and by using pixels only (from the screenshot and
region). Our model, which only uses pixels, clearly outperforms
the replicated model [37] when it only runs on pixels. When the
replicated model uses all input features, including those from the
view hierarchy, on our dataset, our model achieves better AUC and
similar precision, but has slightly lower recall when using a 0.5
decision boundary (Table 2). The slightly lower recall of our model
is likely due to the distribution of tappable elements in our dataset,
which can be addressed by fine-tuning the decision threshold.

5 EXPLAINING TAPPABILITY PREDICTIONS
Our neural network can be used to model users’ perceptions of
tappability for a broad variety of mobile UI elements. However,
the predictions of models like ours are limited in the sense that
designers must rely on their own judgment to determine what
visual cues were responsible for the prediction, and, if needed, how
the design must be modified to improve its perception (Figure 3).
We draw upon techniques from XAI and ML interpretability to
provide deeper explanations of our model’s predictions, both in
the context of the input itself, as well as examples the model has
learned from. We implement two types of explanations: at the local
level, to suggest which elements in the input screenshot were most
influential, or “salient”, to a given prediction, and at the global level,
to show how other applications with similar design patterns can
influence tappability perception positively and negatively.

https://github.com/google-research/google-research/tree/master/taperception
https://github.com/google-research/google-research/tree/master/taperception
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Table 2: Tappability prediction model performance on our new dataset. Our model, which only uses pixels, clearly outper-
forms [37] when only run on pixels. It has slightly higher AUC, similar precision, and slightly lower recall compared to the
all-features replicated model.

Model AUC Precision (%) Recall (%)

Ours (pixels only) 0.9030 91.54 80.23
Swearngin et al. [37]; pixels + all other features 0.8437 91.65 84.53
Swearngin et al. [37]; pixels only 0.6521 76.79 80.79

Figure 3: The input to our model as a running example to
this section, a randomly selected screenshot from our dataset.
The element of interest is indicated as a magenta dashed
rectangle. Our model predicts the element is tappable with a
probability of 57.85%.

Figure 4: Left: The same input screenshot as in Figure 3 with
a selected element in amagenta dashed rectangle. Center: the
heatmap generated by XRAI, using regions fromUI elements.
The regions which most strongly influence the selected ele-
ment’s tappability prediction are rendered in red, while the
least influential regions are rendered in blue. Some text is
extremely highly attributed (an anomaly). Right: the input
screenshot filtered by the values of the saliency heatmap.
The elements most important to the tappability prediction
are the brightest.

Figure 5: Center: the same XRAI calculation as in Figure 4,
but without using provided regions from the UI element
bounding boxes. Regions are generated using Felzenszwalb
segmentation.

5.1 Attributing Tappable UI Elements with
Saliency Techniques

To provide a local explanation of the model’s predictions, we use the
XRAI algorithm [21], a gradient-based algorithm which produces
a heatmap highlighting what regions of an input image were the
most influential to a given model output, also known as a saliency
map (Figure 4). Importantly, while the output of saliency algorithms
like XRAI are correlative, and cannot explain the causal reasons
behind model predictions, they are often useful for gaining a better
understanding of model behavior in many applications [1]. In our
use case, we use XRAI to generate a heatmap of the UI components
in a mobile app screenshot that most strongly influence the tappa-
bility prediction for a particular element. XRAI calculations and
heatmaps are particular to the specified UI element in a tappability
prediction, since predictions for different UI elements can depend
on their particular context and relationship to other UI elements.
Designers can use the XRAI heatmap to see when the perceived
tappability of a particular element is heavily influenced by other
regions on the screen, e.g., how introducing a new component
changes the perception of surrounding elements.

The XRAI algorithm works by first oversampling the input im-
age into overlapping superpixels of different sizes. Next, Integrated
Gradients, a pixel-based attribution method [36], is calculated on
the input image from black and white baselines. These pixel-level
attributions are then aggregated by summing over segments, rank-
ing segments from most to least important, and merging them
up to a selected threshold. We make one key modification to the
XRAI technique. Rather than oversample the image using Felzen-
szwalb segmentation, we use the native bounding boxes of mobile
UI elements if they are available or can be specified. This means
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we can directly summarize model attributions for regions corre-
sponding to mobile UI widgets, reducing the noise from automated
segmentation methods (Figure 5).

5.2 Explaining Predictions with Similar
Contrasting Examples

Our global explanation method situates the given prediction in the
context of retrieved examples from our mobile UI dataset. We use
nearest neighbors on embeddings from our model to find exam-
ples the model considers similar. The model’s embeddings capture
visual similarity, and the rough position and size of the input bound-
ing box (see section 6). These nearest neighbors are then split by
the model’s tappability prediction, creating a contrasting explana-
tion [5]—a visualization of a set of UIs that have similar designs to
the input, but opposing influences on the perception of tappability.
This acts as a set of curated examples for design inspiration to help
designers make changes that affect users’ tappability perceptions
of UI elements (Figure 6).

To capture embeddings from our neural network, we take the
output from its final convolutional layer and flatten it into a 512-
dimensional vector. We precompute embeddings for every mobile
UI example in our source dataset, and split them into two sepa-
rate indexed arrays of predicted tappable and nontappable exam-
ples. To filter out potentially confusing or ambiguous examples,
we limit these lists to examples which have >65% and <35% tap-
pability probabilities, per our model’s predictions. In practice, we
found that splitting based on model predictions produces more
consistent results than ground-truth human labels. We use the
NearestNeighbors learner from the sklearn Python package to
search for the 5 nearest neighbors from each list (showing 10 ex-
amples total), to embeddings from an input image.

6 ANALYSIS OF SELECTED EXAMPLES
In this section, we sample real-world screenshots from our dataset
to show how our model performs and what our explanations cap-
ture. We randomly select four elements from our dataset that have
associated regions corresponding to common Android UI leaf ele-
ments: ImageView, Button, TextView, and EditText. For each of
these inputs, we show the output of our model and explanation
methods, and describe what could be inferred about the behavior of
our model. In section 8, we summarize trends apparent in our model
across examples and discuss their implications and opportunities
for future work.

6.1 ImageView: Food App Header Logo
This randomly-selected UI and element is a screenshot from a food
application, presenting a complex login view with many clickable
buttons and graphics. The selected region paired with this UI screen-
shot is a logo placed above the login form. The model predicts this
element is not tappable, with a 10.01% tap probability.

The XRAI heatmap strongly attributes the input element as im-
portant to its tappability prediction, and does not factor other ele-
ments in the screen much. It is possible that, since the input element
is a graphic, the model does not consider surrounding elements a
significant factor. Combined with the relatively high model confi-
dence, we can assume that properties of the input element itself (its

Tappable Not Tappable
71.06%; 5/5 marked tappable 29.64%; 3/5 marked tappable

76.27%; 4/5 marked tappable 31.56%; 4/5 marked tappable

74.78%; 5/5 marked tappable 29.59%; 5/5 marked tappable

82.16%; 5/5 marked tappable 33.87%; 5/5 marked tappable

78.09%; 3/5 marked tappable 34.88%; 1/5 marked tappable

Figure 6: Nearest neighbors to the input screenshot from Fig-
ure 3, split by tappability predictions. Examples the model
predicts as tappable are on the left, with non-tappable exam-
ples on the right. Examples contain an entire screenshot with
a specified region, and the region in a larger view. Columns
are sorted by distance to the original input in the model’s
latent space (most similar on top).
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Figure 7: Example from subsection 6.1. Left: input screen-
shot with a ImageView element selected, annotated with a
magenta dashed rectangle. Center Left: Close-up view of the
selected UI element. The model predicts it is not tappable,
with a 10.01% tappability probability. Center Right: The XRAI
heatmapmost strongly illuminates the selected element, and
does factor in other elements significantly. Right: the input
screenshot filtered by the values of the saliency heatmap.

appearance or position) strongly signify non-tappability on their
own. This means that making significant changes to other elements
on the screen would likely not impact the perceived tappability of
this element.

Most nearest neighbors of the food app also contain graphical
elements and icons, with the exception of large text objects that
have similar locations and sizes on the screen as the input (Figure 8).
The non tappable elements are generally larger, and closer to the
center of the screen, matching the style of the input. Tappable
elements tend to be icons commonly associated with actions, e.g., a
shopping cart and an “X” to close a dialog.

6.2 Button: Health App Card Button
This element is a screenshot from a health application, presenting
a complex view with a card, image, and list. The selected region
paired with this UI screenshot is a “Dismiss” button within a card.
The model predicts this element is tappable, with a 99.07% tap
probability (Figure 9).

Similar to the ImageView example, the XRAI heatmap most
strongly illuminates the input element itself. This is likely because
the model has learned to associate Material Design buttons with
a strong perception of tappability, and does not need to reference
much context to establish a confident prediction. The attributed
text in the screen’s title card (“Learn”) may suggest the model’s
attention to a common Material UI standard.

Tappable neighbors are entirely buttons and tabs with over-
laid text and high tappability scores. Non-tappable neighbors are
more mixed, including descriptive text, icons, and even images. The
predictions for several non-tappable examples disagree with the
underlying raters’ labels (Figure 10). The noise in the non-tappable
examples could be a limitation of discretizing the neighbors by
tappability prediction, an effect discussed further in subsection 8.3.

6.3 TextView: Finance App List Item
This example is a screenshot from a finance app, with a view present-
ing a chart and pricing details of a stock (Figure 11). The selected
region paired with this UI screenshot is a text field displaying a

Tappable Not Tappable
67.15%; 5/5 marked tappable 9.39%; 1/5 marked tappable

69.44%; 4/5 marked tappable 19.13%; 0/5 marked tappable

67.89%; 5/5 marked tappable 6.67%; 1/5 marked tappable

65.10%; 5/5 marked tappable 18.71%; 4/5 marked tappable

66.72%; 5/5 marked tappable 15.73%; 2/5 marked tappable

Figure 8: Nearest neighbors from subsection 6.1, split by
thresholded model predictions (tappable neighbors on the
left). Many neighbors (both tappable and not) are graphical
(icons and drawings). Tappable elements tend to be smaller,
and situated near the edges of other elements. Non tappable
elements are generally larger, and closer to the center of the
screen.
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Figure 9: Example from subsection 6.2. Left: input screenshot
with a Button element selected, annotated with a magenta
dashed rectangle. Center Left: Close-up view of the selected
UI element. The model predicts it is tappable, with a 99.07%
tappability probability. Center Right: The XRAI heatmap
most strongly illuminates the input element itself. This is
likely because the model has learned to associate Material
Design buttons with perceptions of tappability, and does
not need to reference much context to establish a confident
prediction. Right: the input screenshot filtered by the values
of the saliency heatmap.

bid price. The model predicts this element is not tappable, with a
36.38% tap probability.

The XRAI heatmap strongly illuminates the region itself, while
also strongly highlighting text in tab navigation and an icon adja-
cent to a nearby text view. Although the input region is generally
expected to be the most important element for its own prediction,
one element of tab text is highly attributed, an anomaly. This may
be due to variances in TextView tappability when below naviga-
tion tabs. It is also worth noting that surrounding text views are
lightly attributed as well, suggesting the model has factored some
surrounding context into the input element’s prediction.

All nearest neighbors of this input screenshot share strong vi-
sual similarities with the input (text on a light background), but
appear in different contexts (Figure 12). Many tappable elements
have icons or graphics nearby, which possibly serve as signifiers of
the tappabillity of the adjacent text. Non tappable elements have
brighter text, and are often placed as descriptions next to tappable
elements. It is worth noting that many tappable elements are also
ListViews, 2 of which have similar color schemes, indicating the
model is factoring multiple contextual elements within the input
example besides the region itself.

6.4 EditText: Entertainment App Login Field
This element is a screenshot from an entertainment application, a
simple login view. The selected region paired with this UI screen-
shot is a “Password” text field. The model predicts this element is
tappable, with a 99.47% tap probability (Figure 9).

Like previous examples, the XRAI heatmap strongly attributes
the selected EditText view, and does not attribute other elements
on the screen. Similar to the Button example, it is possible that the
model has learned an association between theMaterial UI EditText
component and strong perceptions of tappability.

The image in this view does not appear to be attributed differ-
ently from the entire login card. While it is likely that the model
determined the image is not a signifier of tappability, it could also

Tappable Not Tappable
99.03%; 5/5 marked tappable 34.32%; 2/5 marked tappable

99.03%; 5/5 marked tappable 31.90%; 4/5 marked tappable

99.20%; 5/5 marked tappable 34.13%; 3/5 marked tappable

99.19%; 5/5 marked tappable 28.24%; 4/5 marked tappable

99.39%; 5/5 marked tappable 31.16%; 5/5 marked tappable

Figure 10: Nearest neighbors for subsection 6.2, split by
thresholded model predictions (tappable neighbors on the
left). While many tappable elements contain similarly-styled
buttons from other apps, the non-tappable elements display
highly varied elements, with and without text. A potential
cause of this is that most elements near the input button in
latent space are other buttons; and the nearest non-tappable
examples are significantly further away, so they are not as
visually similar.
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Figure 11: Example from subsection 6.3. Left: input screen-
shot with a TextView element selected, annotated with a
magenta dashed rectangle. Center Left: Close-up view of
the selected UI element. The model predicts it is not tap-
pable, with a 36.38% tappability probability. Center Right:
The XRAI heatmap strongly illuminates the text view region
itself, while also strongly highlighting text in tab navigation
and an icon adjacent to a nearby text view. Right: the input
screenshot filtered by the values of the saliency heatmap.

be, in part, due to these two being the same actual element in
the source UI view hierarchy. Our use of XRAI is limited by the
bounding boxes provided from the source UI view structure—large
objects in UIs may cause XRAI to aggregate too much detail from
pixel attributions beneath. In practice, this may not be a significant
limitation, since many large UI objects inherit a single tappability
attribute.

Like the TextView example, the tappable neighbors are all visu-
ally similar, with text over a light-colored background, comprising
buttons and text fields. Non tappable neighbors are, similarly, text
elements in different contexts: descriptions of nearby objects, in-
structions, or hyperlinks. Of note, the third non-tappable neighbor
is also a EditText element. A probable distinguishing feature of
this element is that the text is dark (not grayed), and thus the model
could be confusing this element for a text description (Figure 14).

7 EXPLORATORY EVALUATIONWITH
PROFESSIONAL DESIGNERS

To better understand how ourmodel and its explanation outputs can
be used in design practice, we conducted an exploratory evaluation
with professional UI/UX designers, and analyzed the successes and
drawbacks of our approach.

7.1 Participants & Study Design
We recruited 14 participants at a large technology company. We ex-
cluded one participant’s results from analysis because they did not
submit any written feedback. These participants were frommultiple
teams and had an average 11 years (standard dev. 7.5 years) of pro-
fessional UI/UX design experience. To capture a variety of scenarios,
we randomly selected six UI examples (mobile app screenshots with
a preselected UI element) from our dataset for review. Input UIs
and predictions are shown in Figure 15, outputs from explanation
algorithms are shown in Appendix A. Examples counterbalanced
prediction (tappable/non tappable), prediction confidence (high:
> 0.85; low: < 0.15), and rater (worker) agreement (high: 5-rater

Tappable Not Tappable
72.73%; 5/5 marked tappable 27.05%; 0/5 marked tappable

68.88%; 5/5 marked tappable 31.57%; 1/5 marked tappable

66.50%; 5/5 marked tappable 17.11%; 3/5 marked tappable

76.04%; 5/5 marked tappable 30.51%; 4/5 marked tappable

70.75%; 4/5 marked tappable 23.54%; 2/5 marked tappable

Figure 12: Nearest neighbors from subsection 6.3, split by
thresholded model predictions (tappable neighbors on the
left). Tappable elements are similar to the input, in that most
contain stacked text elements (two with a green header bar).
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Figure 13: Example from subsection 6.4. Left: input screen-
shot with a EditText element selected, annotated with a ma-
genta dashed rectangle. Center Left: Close-up view of the
selected UI element. The model predicts it is tappable, with
a 99.47% tappability probability. Center Right: The XRAI
heatmap strongly attributes the EditText view, and does
not attribute other elements on the screen. Right: the input
screenshot filtered by the values of the saliency heatmap.

agreement; low: split 2-3 in either direction). We selected the tap-
pable/high confidence/high agreement example for use in onboard-
ing. Tappability labels from raters associated with the examples
were not shown to participants. Our study plan was reviewed by
our company’s legal and privacy boards, and participants were
required to give informed consent before trials.

During each session, we first described our model and its ex-
planation outputs using the onboarding example. Then, the five
remaining examples were shown in a randomized order, together
with the model’s outputs. For each example, we asked our partic-
ipants to think out loud; reflect on whether they understood or
agreed with the model’s outputs; and suggest how the selected
element in the example could be altered to influence its perceived
tappability. We explicitly informed participants that both positive
and negative feedback would be useful to the design team for mak-
ing improvements. A researcher took notes of verbal responses
while examples were shown. After seeing all examples, participants
filled out a short survey asking what they thought performed well,
needed improvement, and could fit into their design practice. An
entire session took approximately 45 minutes to complete. For anal-
ysis, feedback from written responses was processed in an open
coding phase, and further grouped by one researcher into the related
topics, which were agreed upon with the other researchers [39].
Quotes shared below are exclusively from survey responses.

7.2 Results
7.2.1 Tappability predictions can save significant time and effort
compared to user studies. From survey responses, 11 participants
perceived the system as accurate, and 7 remarked how the system
would be valuable for evaluating designs as a time-saving alter-
native to running user studies: “It’s fairly accurate in predicting
whether an element is tappable or not” (P7); “I think it’s great to see
a quantified results of tappability - it can reduce the time to conduct
usability study.” (P6); “UI designers could use the model to cross check
and see if they match the anticipated results. If that happens, it will
save a lot of time running user studies.” (P3). One noteworthy theme
was the value of using our system for rapid evaluations at multiple
stages of the design process: “It might be useful during handoff to

Tappable Not Tappable
99.47%; 4/5 marked tappable 34.38%; 2/5 marked tappable

99.35%; 5/5 marked tappable 31.56%; 4/5 marked tappable

98.67%; 5/5 marked tappable 33.67%; 2/5 marked tappable

99.39%; 4/5 marked tappable 32.49%; 4/5 marked tappable

99.87%; 3/5 marked tappable 32.05%; 2/5 marked tappable

Figure 14: Nearest neighbors from subsection 6.4, split by
thresholded model predictions (tappable neighbors on the
left). The tappable neighbors are highly visually similar, al-
though they are not all the same input type as the input
(many are buttons with a light background).
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Figure 15: The six mobile UI screenshots with preselcted UI
elements used in our user evaluation. Selected elements are
circled with a dotted magenta line. The top left UI screenshot
was used for onboarding participants.

engineers as a final check on design quality, or assessing a built app
during a usability audit.” (P4); “I would use it in the evaluative stages
of design as a gut check on what I’ve done.” (P9). Our system could
directly enable this capability if implemented in an end-to-end ap-
plication, since it only requires pixels as input and thus can operate
on fully implemented UIs or visually realistic mockups.

P5 pointed out a trade-off of using our system for evaluation,
reflecting on its static nature, versus the open-ended format of tra-
ditional usability studies: “Users might have an advantage by being
able to trial and error. It seems like the model gets a lot correct and
points out possible design flaws, but users tend to explore openly any-
way making choices still situational.” Overall, this feedback suggests
strong potential uses cases in rapid, heuristic evaluations of UIs
when user studies would be too time-consuming, both for the early
stages of design (when prototyping alternatives) and for catching
potential errors in a design as it nears production.

7.2.2 Analysis of a single screen offers limited notion of context
in a UI flow. While many participants remarked on the model’s
generally good performance, 4 were more critical or skeptical when
it came to UI elements that were sensitive to the context of other
screens in a UI flow, e.g.: “It doesn’t seem as useful for navigation
or text where the tappability is more contextual” (P4); “Considering
context and looking at the whole page holistically are very important
in UI design. The system tend to ignore the the context of the screen.

E.g. Is it the home screen or interior page? The app logo can be tappable
depending on the context” (P13). The cases referred to in these quotes
are examples with low model confidence, reflecting a potentially
ambiguous perception of tappability that depends on how the input
screenshot is situated in a flow of multiple UIs. One limitation of our
model is that it only uses a static snapshot of a UI as input. In future
work, temporal information could be used in our model’s inputs
to add additional context, as prior work has done for predicting
user engagement with animations [42] and grounding UI action
sequences [26]. In addition, this is a case where including additional
input modalities (e.g., text) can provide additional cues to boost
prediction confidence.

7.2.3 Contrasting similar examples provided design feedback for
iteration. At least 5 participants wrote favorably of the contrasting
similar examples in open-ended feedback, and remarked on their
value for inspiring potential design changes: “The initial "Model
tap prob" metric is extremely useful as are the examples of similar
UI elements that have both low and high [tappability] scores.” (P14);
“I might also use some of the comps [examples] to find inspirations
on other ways to design a certain element” (P9). Some participants
liked the diversity of some sets of contrasting similar examples
(“the provided examples are useful to reference and compare to, even
if the similar elements are not exactly the same.” (P10)), while others
desired a greater degree of semantic similarity (“Heading component
compares to a CTA button in Settings page. It feels like comparing
apples to oranges. I would suggest, using similar UI component prox-
imity for similar examples” (P1)). One direction for future work
could be to allow users to filter and set thresholds for examples
(e.g., by certain types or locations of UI elements), or reporting
actual distances (“Maybe for the nearest neighbors, provide some
indications of how near or far the neighbor is, e.g. 90% vs 10%” (P12)).

Overall, this feedback suggests that the contrasting similar ex-
amples, curated based on a specified UI element, have the potential
to provide useful inspiration for designers. This may help “close
the loop” beyond tappability prediction scores alone.

7.2.4 Participants desiremore explicit explanations beyond the heatmap.
While 2 participants remarked that the heatmap was useful, 4 par-
ticipants noted the heatmap was confusing to use, or needed better
instructions, e.g.: “Heat map. Confused me and would need some
guidance on how to process the info.” (P14); “Saliency heatmap defi-
nitely needs some mental shift to understand.” (P6). While this could
potentially be mitigated with improved onboarding or more expe-
rience [6, 43], the “black-box” nature of our model means, while
it may be effective at predicting users’ perceptions of tappability,
the mechanisms which enable those predictions may not reflect the
same reasoning as users [28]. The mismatch in mental models could
explain this result: “I found the heat maps and nearest neighbors less
helpful because they didn’t resemble my own mental model / instincts
for evaluating the usability of these mockups” (P4).

Some participants expressed a desire for deeper explanations of
why certain elements in the heatmap contribute to a tappability
prediction more than others, which could help improve its usability:
“On the heat map, add some explanation about why the other elements
might or might not impact the probability score of an elemement”
(P14); and otherswished the system could output design suggestions
directly: “It’d be amazing if the system can provide recommendation
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like boost the color contrast” (P6). One promising direction for future
work could draw from techniques in ML debugging research, by
identifying common “heuristics” from patterns in the model’s and
XRAI heatmap’s outputs and raising messages with concrete design
suggestions (e.g., increasing contrast or changing colors) [19, 33].

8 THEMES IN MODEL BEHAVIOR:
DISCUSSION AND LIMITATIONS

In this section, we describe patterns observed in our selected exam-
ples and discuss implications for the use of our model and explana-
tion mechanisms.

8.1 Persistent Signals and Signifiers
Text as a feature indicating tappability. In examples in section 6

as well as examples in our user evaluation, bounding boxes sur-
rounding text elements were highly attributed by XRAI. This does
not necessarily mean the text itself is perceived as tappable, but
rather that the existence of text serves as a signifier of tappability
to nearby elements (see subsection 8.2). This is one potential draw-
back to our pixel-based model compared to multimodal models that
use text as input to gain a deeper understanding of an element’s
context (e.g., a “submit” button or “click here to unsubscribe” text).

Icons next to text generally indicate tappable regions. To ourmodel,
small icons or graphics appearing next to text strongly signify
tappability. This is demonstrated in Figure 12, where most tappable
text elements are near radio buttons, icons, and other graphics.
Using icons to signify the tappability of adjacent text elements is
a well-known practice [29]. However, our model does not always
produce reliable tappability predictions of checkbox elements (E.g.,
Figure 12, bottom right). This is likely due to ambiguity in the
labeling task. Since the checkbox, accompanying description, and
parent element containing both are each distinct UI elements with
separate bounding boxes, any one of these elements within a given
screenshot could be selected for labeling. Crowdworkers may have
different perceptions of the tappability of the different elements,
and this uncertainty is reflected in our model’s prediction scores.

Image views in apps are not consistent predictors. Because the con-
tent of ImageView elements can be highly varied (e.g., containing
icons, logos, thumbnails, previews, ...), they can sometimes con-
found our purely vision-based model (see Figure 10). While our
model likely also uses the location and context of the image ele-
ment, the content of the image can overwhelm predictions, possibly
due to the texture sensitivity of CNNs [15]. One way to potentially
mitigate this effect would be to replace images with placeholders,
similar to wireframes [9, 11].

8.2 Challenges in Interpreting XRAI
Attributions

XRAI attributions highlight influential regions; highly influential
regions are not necessarily tappable themselves. As reflected in the
results of our user evaluation, the XRAI heatmaps require practice
to take full advantage of, and could benefit from the addition of
heuristic-based explanations. A critical note for our use of XRAI
is that the heatmap it produces is not a tappability heatmap, but a

heatmap showing how regions in the UI screen influence the tap-
pability prediction for a particular element. For example, if highly
attributed text near a button was removed, that button would likely
no longer be classified as tappable. As such, saliency methods like
XRAI are often useful in practice for diagnosing the features that
influence predictions, and the sensitivity of that prediction to con-
textual factors.

Summarizing attributions with regions may leave out important de-
tails. In contrast to XRAI, which uses regions, pixel-based saliency
methods like Integrated Gradients [36] highlight inputs at a finer
scale. While this may be useful for debugging features of small UI
elements, pixel-based methods are known to be difficult to inter-
pret by humans compared to region-based methods, and can be
susceptible to errors [1, 21].

XRAI attribution values cannot be compared between examples.
Like other gradient-based saliency methods, the raw values of XRAI
attributions are specific to input examples [1]. Some other algo-
rithms, such as DeepSHAP [30], sum to the probabilities of pre-
dictions, and may be compared between examples. These other
methods could also enable new interactions, such as aggregated
analyses, a promising direction for future work.

8.3 Browsing Nearest Neighbor Examples
Nearest Neighbors capture many dimensions of similarity. Across

all of our examples, nearest neighbors appear to capture dimen-
sions beyond visual similarity alone. In particular, bounding box
locations, sizes, and aspect ratios are generally similar among neigh-
bors. This indicates that our model has not only learned to use the
appearance of an element to predict its tappability, but also con-
textual information such as its location, shape, and proximity to
other elements. As participants in our user evaluation noted, adding
interactivity to the nearest neighbor examples, such as the ability
to filter and sort by component types and application properties,
could help narrow down these contextual cues to provide more
relevant feedback for iterating UI designs.

Splitting neighbors by binary tappability predictions discards some
information. While using a discrete boundary can provide useful
contrasting examples, the average tappability prediction probabili-
ties and distances between splits can contain subtle yet important
information about the landscape of UI design patterns related to
the input. For example, the health app’s non-tappable neighbors
included many seemingly unrelated graphics. This may be because
of skewed distances, i.e., most nearby examples are tappable, and
the closest non-tappable neighors are significantly further away,
and, thus, less similar. In other cases, the sets of neighbors may have
skewed average probabilities (e.g., near 99% for tappable, and near
49% for non tappable). This is an additional, strong, indicator that
similar UIs are generally either perceived as tappable or uncertain,
rather than non-tappable. The contrary is also true: the neighbors
of confidently non-tappable examples often score near 51% for tap-
pable, and 0% for non-tappable. In future work, these details could
be made explicit in more continuous, interactive visualizations, to
help designers explore related UI designs.
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Encouraging exploration of neighboring examples. While using
UIs with similar designs but different effects on tappability percep-
tion are useful for contrasting explanations, designers often value
seeing diverse examples of designs for inspiration [9, 38]. Future
iterations of this work could sample more distant UI examples,
filtered by UI element types, or even learned concepts, i.e., with
concept vectors [22]. In addition, since nearest neighbor examples
are split by model predictions, the similar examples do not have to
be limited to our source dataset. In other words, our model can be
used to retrieve nearest neighbors or similar examples from other
datasets.

8.4 Additional Limitations
Concept drift. While UI design styles and trends change over

time, our model is trained on a “static” snapshot of application UIs,
and may give less reliable predictions over time. This phenomenon
is known as concept drift [40], and may be mitigated by augment-
ing the dataset with new examples over time. Furthermore, since
our dataset comprises only Android applications, our model may
require fine-tuning to generalize well to UI screenshots from other
platforms.

Perceived tappability predictions contain multiple signals. As we
have found by analyzing the distribution of label agreement in our
dataset, the tappability of many UI elements in the wild appear
ambiguous to users. While this uncertainty explicitly limits the
possible accuracy of our model, it also means that predictions near
the decision boundary suggest user confusion. This signal, along
with other usability metrics (e.g., engagement [42] or cognitive
load) may be useful outputs from future models.

9 CONCLUSION
We presented a novel, automated system for predicting the human
perceived tappability of mobile UI elements and explaining model
predictions to users. Our work significantly advanced the art by
developing a purely vision-based deep neural network, which only
relies on pixels and does not require a UI to be fully specified;
and by enabling mechanisms for explaining design insights to the
user with contextual and instance-level interpretations of model
predictions. We also create a new tappability dataset where each
element is labeled by multiple crowdworkers for reliable tappabil-
ity estimation. We provided an in-depth discussion of our model
behavior and explanation mechanisms through extensive analysis
of examples and collected feedback from experienced professional
UI/UX designers in how they would use and improve our system.
Together, our work not only advances tappability modeling research
but also demonstrates how deep learning approaches can be used
for automatic UI usability analysis.
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A USER STUDY FIGURES
Following are the UIs and outputs of our explanation algorithms shown to participants in the user evaluation in section 7.
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A.1 Example 1: Onboarding Example
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A.2 Example 2
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A.3 Example 3
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A.4 Example 4
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A.5 Example 5
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A.6 Example 6
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