
SCRAM: Simple Checks for Realtime
Analysis of Model Training for
Non-Expert ML Programmers

Eldon Schoop
UC Berkeley EECS
Berkeley, CA 94720 USA
eschoop@berkeley.edu

Forrest Huang
UC Berkeley EECS
Berkeley, CA 94720 USA
forrest_huang@berkeley.edu

Björn Hartmann
UC Berkeley EECS
Berkeley, CA 94720 USA
bjoern@eecs.berkeley.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
CHI’20 Extended Abstracts, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-6819-3/20/04.
https://doi.org/10.1145/3334480.3382879

Abstract
Many non-expert Machine Learning users wish to apply
powerful deep learning models to their own domains but en-
counter hurdles in the opaque model tuning process. We
introduce SCRAM, a tool which uses heuristics to detect
potential error conditions in model output and suggests ac-
tionable steps and best practices to help such users tune
their models. Inspired by metaphors from software engi-
neering, SCRAM extends high-level deep learning develop-
ment tools to interpret model metrics during training and
produce human-readable error messages. We validate
SCRAM through three author-created example scenarios
with image and text datasets, and by collecting informal
feedback from ML researchers with teaching experience.
We finally reflect upon our feedback for the design of future
ML debugging tools.

Author Keywords
Machine Learning; Debugging; Tutorial Systems; Interactive
Visualization.

CCS Concepts
•Human-centered computing→ Interactive systems
and tools;

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW217, Page 1

https://doi.org/10.1145/3334480.3382879


Introduction
Many domain experts, hobbyists, and makers wish to adopt
Machine Learning (ML) models such as neural networks
into their applications, but lack formal training in ML. These
users often have some programming expertise and their
own novel datasets for a particular domain problem. For
example, a farmer may want to classify the types of cucum-
bers from their farm, or an independent app developer may
want to recommend workouts in their fitness app [35, 38].

Several Deep Learning (DL) toolkits, including Keras [7] and
Apple Create ML [15], make these tasks more approach-
able by providing high-level APIs which reduce the effort
needed to preprocess data, train, and evaluate DL models
(neural networks). However, when non-expert ML develop-
ers use these APIs to train these models on novel datasets,
the models can produce unexpected output without explic-
itly throwing errors.

While experts can rely on experience and tools such as
TensorBoard [1] and tfdbg [6] to inspect and correct model
behavior, non-experts often lack the theoretical and prac-
tical knowledge to interpret results from these tools [14, 5]
and could benefit from explanations and guidance through
this unstructured process [3, 33].

We introduce SCRAM, a prototype system which can inter-
pret potential error conditions in the DL training phase and
provide descriptive, actionable warning messages to help
users debug and produce well-trained models (see Figure
1). SCRAM draws inspiration from tools in software engi-
neering which inspect code to provide warning messages
and suggestions to developers. Our goal is to develop a
system that can encode this tacit knowledge of experts
into heuristics which check model output over time during
training. This system will guide non-expert users to correct
errors with human-readable error messages that explain

Keras  
Training 
Process

SCRAM 
Instrumentation

streaming 
metrics

SCRAM  
Checker

data

model 
architecture

SCRAM 
heuristics

suggestions + 
logs

SCRAM

Figure 1: The Keras framework outputs data batches and model
metrics to SCRAM (left), and SCRAM outputs error messages and
visualizations to Tensorboard (right).

best practices and code recipes to bridge theoretical and
practical knowledge gaps. During the tuning phase, users
interpret these error messages to make changes to hyper-
parameters, correcting model behavior.

In this paper, we describe the SCRAM prototype; share
three heuristics for detecting common problems during neu-
ral network training; and validate error messages produced
by SCRAM in three author-created scenarios with experi-
enced ML instructors for future iterations of our system.

Related Work
Interactive ML Development
HCI research has produced novel interfaces which allow
users to interactively train and tune ML models as early
as 2003 [9]. Gestalt is toolkit which adds structure to the
ML development process, allowing developers to iteratively
modify and analyze their models in an IDE [32]. Makers can
alternatively use ESP to interactively train and deploy ges-
ture recognition models on Arduino hardware [26]. While
these tools support the feature engineering workflow re-

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW217, Page 2



quired for classical ML, SCRAM focuses on training and
tuning deep neural networks, which instead learn features
from the input data itself. These DL models enable pow-
erful contemporary applications in domains where manual
feature selection is infeasible (e.g., image/speech recogni-
tion), but come with the trade-off of an extended and hard-
to-interpret training process. ML practitioners can add in-
strumentation and visualizations to their DL models using
toolkits such as TensorWatch [36] and Lucid [30], but the
choice of visualization and its interpretation requires exper-
tise. SCRAM uses heuristics to produce text error messages
which can guide novices in the DL debugging process. One
recent commercial tool may help non-experts fine-tune pre-
trained models, but does not interpret model output [2].
SCRAM integrates with a open source Python framework,
Keras [7], which has a large support community and can
provide more advanced functionality as needed.

Data Collection

Model Selection

Prerequisites

Data Preparation
Random Crop

SCRAM
Training and 

Tuning

Learning Rate:
0.001

Evaluation
dog: 0.99
cat: 0.01

test 
accuracy:
0.95

Figure 2: Once a dataset is
collected and an ML algorithm is
selected, users must (1)
preprocess data, (2) train and tune
their model, and (3) evaluate their
model on test data.

Software Engineering Support Tools
The software engineering community has created a vari-
ety of tools which produce useful warnings and sugges-
tions to guide software development. SCRAM draws upon
established paradigms in software engineering such as lint-
ing [17], unit testing, dynamic analysis [28], and explanation-
based debugging [21] to help users interpret the behavior
and inspect the points of failure of their ML applications. We
draw additional inspiration from software visualization [39]
and tutorial systems for complex user interfaces [12] which
guide novices through complex tasks.

Model Visualization and Inspection Tools
Research and engineering teams have produced novel in-
terfaces to compare model performance [27]. Because of
the intrinsic relationship between training data and a model,
these tools can highlight relevant training data contributing
to outliers [31] and refine the model itself [4]. TensorFuzz

can further assist debugging by adapting coverage-based
fuzzing to identify model inputs which generate numeri-
cal errors [29]. Other tools track and visualize test results
to help select models for large-scale deployments [23, 16,
34]. Evaluating the performance of ML models is a criti-
cal step, but depends on having an already trained model.
SCRAM assists users in the training step required before
evaluation.

Explanations and Interpretability
SCRAM is inspired by systems which help practitioners in-
terpret the output and behavior of their ML models. Deep
neural networks often have too many parameters to easily
understand, and explaining their output is an active area of
research [10]. Activation Maps highlight the parts of an in-
put image used to make a prediction [30]. A more recent al-
gorithm, Concept Activation Vectors (CAV), can explain the
higher-level concepts used in an output classification [20].
Training and tuning neural networks similarly produces out-
put which is difficult to interpret [18, 19], relying on tacit
knowledge and expertise to understand [14]. We believe
SCRAM is an early step in providing explanations of neural
network output during the training process.

A key component of SCRAM is an automated checking
infrastructure that enables running tests over model run-
time behavior to flag problems for non-expert users. Other
systems in HCI research use this approach to assist de-
bugging electrical circuits and embedded systems [8, 25].
SCRAM adapts this approach to ML debugging.

Design Considerations
SCRAM targets scenarios when users have an existing
problem formulation for applying ML to their applications.
In these cases, a novel dataset has already been collected
and a neural network architecture chosen. The remain-

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW217, Page 3



ing steps, shown in Figure 2, are: (1) data preparation, in
which the data are split into training and tests sets, nor-
malized, and formatted for input; (2) training and tuning,
where model hyperparameters are tuned during training
to help the model fit the data; and (3) evaluation, in which
model performance is tested and compared. SCRAM fo-
cuses on guiding users through the second phase, training
and tuning. During this phase, hyperparameters, such as
the optimizer learning rate or model regularization, tune
how the model fits batches of data, so it can generalize ac-
curate predictions to new input data. However, this phase
can produce confusing output, leading many users to even
abandon applying ML altogether [5]. During tuning, experts
rely on tacit knowledge to interpret model output, e.g., by
visually inspecting the model loss and accuracy curves, or
running small scale tests [18, 19].

We chose to integrate our system with existing, popular DL
frameworks, Keras [7], and Tensorboard [1]. Keras is a pop-
ular choice for ML novices because it requires little code to
construct and train neural networks, but its capabilities can
also expand to meet advanced needs such as those of ML
researchers. SCRAM outputs plots, suggestions, and error
messages to TensorBoard, a visualization framework built
for DL instrumentation that also integrates with Keras. Ten-
sorboard supports real-time data loading during training as
well as keeping track of older runs. To add SCRAM support
to a Keras program with a Tensorboard, users only need to
make a one-line code change.

Figure 3: Error messages
produced by SCRAM explain
high-level concepts as well as
suggest code snippets.

Using SCRAM
Sam, a molecular biologist, wants to count the number of
Gram positive bacteria in samples taken from an experi-
ment on microscope slides. They already have access to
thousands of annotated photos from previous experiments,
and wish to repurpose a pretrained object detection neural

network to count the bacteria in new samples. Formatting
the dataset is easy, but once training begins, the model loss
seems to increase, then reach NaN. A quick internet search
turns up a Twitter thread 1 suggesting a lower learning rate.
With the learning rate corrected, the model begins training,
but the validation accuracy is much lower than expected
and doesn’t seem to be improving. Sam tweaks multiple pa-
rameters of the network and optimizer, but nothing seems
to work. An ML engineer friend takes a quick pass over the
code, but doesn’t see anything obviously wrong and sug-
gests using SCRAM. SCRAM detects that some input data
points are reaching values as high as 255, and produces an
error message stating the training data isn’t being normal-
ized properly. The message also suggests a code snippet
to show how to normalize the training data to the model’s
expected input distribution, between -1 and 1. After Sam
implements the suggested snippet, the model’s accuracy
increases rapidly. Sam verifies the model’s correctness on
test data. The model is integrated into Sam’s lab workflow,
saving hours of cell-counting time.

Implementation
SCRAM hooks into the built-in callback mechanism of Keras,
which can invoke actions during model training. During
training runtime, data batches and model metrics (loss and
accuracies) are fed into SCRAM, where they are logged and
checked against a list of heuristics to produce error mes-
sages. Checks are loaded individually, and can be swapped
and customized as needed within SCRAM. Error messages
and metrics are emitted directly to Tensorboard via the Ten-
sorflow Summary API. (See Figure 1)

Model Checking Heuristics and Error Messages
SCRAM currently includes three heuristics which can iden-
tify common problems novices face when training their neu-

1https://twitter.com/karpathy/status/1013244313327681536

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW217, Page 4

https://twitter.com/karpathy/status/1013244313327681536


Heuristic Description Detection Method

Overfitting
When a model too closely fits its training
data, it loses its ability to generalize to new
data.

Check if validation accuracy decreases
over two epochs while training accuracy
increases, which likely indicates overfit-
ting [18].

Improper Data
Normalization

In transfer learning, new data should be
normalized to a similar range as the original
data the model was trained on.

Check if the values of input features of cur-
rent batch lie within the conventional range
of [−1, 1] [37].

Unconventional
Hyperparameters

Some hyperparameters for training deep
models significantly affect model perfor-
mance [11]. For instance, using too high
of a learning rate will cause the model to
produce NaN loss.

Check if the loss value reaches NaN, which
indicates a possible incorrect range of hy-
perparameters [19].

Table 1: SCRAM heuristics and associated detection methods.

ral networks (see Table 1). We collect these heuristics from
research literature, course notes, and tutorials from ML ex-
perts [19, 18, 37, 11]. While these heuristics cover several
common scenarios novices may encounter during training,
there are many others which could be implemented in the
future as well. Each heuristic has an associated checking
function that tests if collected metrics violate the heuristic
and an associated error message which is authored to give
general theoretical advice as well as practical code snippets
that can be used.

Inital User Experiences
To explore the utility of SCRAM, we constructed 3 example
scenarios of errors with 3 different datasets: CIFAR-10 [22],
Fashion-MNIST [40], and Large Movie Reviews [24]. Each
scenario is inoculated with a potentially faulty model setup
to generate errors from SCRAM: we use a large fully-connected
network without any regularization to overfit on Fashion-

MNIST; we set the model learning rate to 1e10 for Large
Movie Reviews; and we use unnormalized pixels of the im-
ages in CIFAR-10 directly for model training.

To understand how SCRAM may help novices, we solicited
feedback from 2 ML researchers with experience teaching
introductory ML courses. We showed them our example
scenario notebooks and allowed them to interact with the
training code and error messages produced by SCRAM.
Sessions lasted under half an hour each.

Both participants stated the notifications would be useful to
novices, and that the heuristics capture common problems
encountered by non-expert ML developers. One participant
expressed its potential use to experienced ML developers—
since training with large datasets may take days or weeks,
notifications produced by SCRAM could direct attention to
model training when needed. One participant remarked that

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW217, Page 5



SCRAM can catch errors that might not even be detected
by a novice at all, such as normalization. Both participants
expressed interest in adding other heuristics, such as pre-
dicting when a batch size may be too large to fit in mem-
ory (usually resulting in an error and program interruption).
Other suggestions were for tightening integration between
SCRAM and the code itself, by differentiating warnings and
errors for conditions that can break execution during run-
time, or by identifying the particular lines of code that gen-
erated the error (e.g., which part of the model generated
a NaN output). Finally, one participant remarked that de-
bugging strategies aren’t often taught in ML courses, and
SCRAM could serve as an instructional aid.

Future Work and Conclusion
SCRAM represents a first step in making the neural net-
work training and tuning process more manageable, thus
making applying ML more approachable to non-experts.
Beyond adding additional heuristics, we are excited to con-
tinue work on SCRAM in the following areas:

Dynamic Error Messages: Error messages produced by
SCRAM are written to apply to general cases, and provide
explanations to help users narrow down the root cause and
implement fixes. Dynamically generated error messages
such as those produced by software tutorial systems [13]
could steer users closer to identifying the root causes of
error conditions. Future iterations of SCRAM could check for
finer numerical conditions or perhaps learn from examples
to dynamically generate help messages.

Code-Aware Tutorial Content: Making the error messages
from SCRAM interactive could significantly improve its use
as a tutorial system. For example, SCRAM could highlight
specific lines of user code or Tensorboard visualizations.
Another potential approach could be gleaned from the Java

Whyline, which allows users to ask questions about pro-
gram output during runtime to identify bugs [21].

Integrating Active Tests with SCRAM: Further engineer-
ing work could enable SCRAM to run static checks of the
ML program, enabling many more heuristics (e.g., check-
ing initialization). SCRAM could also be extended to exe-
cute operations with the model, such as overfitting on small
batches of data or running user-defined unit tests.

Controlled User Evaluation of SCRAM: Our exploratory
validation of SCRAM had a limited number of participants
and was conducted with experienced instructors, not tar-
get users directly. A controlled user evaluation of the next
iteration of SCRAM would determine the effectiveness of its
heuristics and error messages. One possible experiment
design could be that of Gestalt [32], in which novices were
asked to debug ML models inoculated with errors in ran-
domized conditions.

Communicating Uncertainty of Heuristics: The heuris-
tics used by SCRAM are designed to detect and explain
common errors, but these explanations are assumptions
of model behavior and may not always be applicable. To
mitigate this, the language of the messages are adapted
to convey this intrinsic uncertainty, guiding the user to con-
sider multiple possible underlying root causes and offering
different solutions to mitigate them.

Recent advances in ML research have impacted numerous
aspects of daily living, from transportation to healthcare to
entertainment. We believe that artists, makers, domain ex-
perts, software engineers, and scientists can benefit from
these advances by introducing these powerful tools to un-
derstanding and exploring their domain-specific data.

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW217, Page 6



Acknowledgements
We wish to thank Philippe Laban, Mike Laielli, James Smith,
and Andrew Head for their valuable insight in creating SCRAM.
Thanks also to Ramon for modeling for Figure 2.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, and
et al. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and
Implementation (OSDI’16). USENIX Association, USA,
265–283.

[2] Runway AI. 2019. Runway ML. (2019).
https://runwayml.com/

[3] Saleema Amershi, Andrew Begel, Christian Bird,
Robert DeLine, Harald Gall, Ece Kamar, Nachiappan
Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: A
Case Study. In Proceedings of the 41st International
Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP ’19). IEEE Press,
291–300. DOI:
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00042

[4] Saleema Amershi, Max Chickering, Steven M.
Drucker, Bongshin Lee, Patrice Simard, and Jina Suh.
2015. ModelTracker: Redesigning Performance
Analysis Tools for Machine Learning. In Proceedings
of the 33rd Annual ACM Conference on Human
Factors in Computing Systems (CHI ’15). Association
for Computing Machinery, New York, NY, USA,
337–346. DOI:
http://dx.doi.org/10.1145/2702123.2702509

[5] C. J. Cai and P. J. Guo. 2019. Software Developers
Learning Machine Learning: Motivations, Hurdles, and
Desires. In 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC).
25–34. DOI:
http://dx.doi.org/10.1109/VLHCC.2019.8818751

[6] Shanqing Cai. 2017. Debug TensorFlow Models with
tfdbg. (Feb 2017).
https://developers.googleblog.com/2017/02/debu
g-tensorflow-models-with-tfdbg.html

[7] François Chollet. 2015. keras.
https://github.com/fchollet/keras. (2015).

[8] Daniel Drew, Julie L. Newcomb, William McGrath, Filip
Maksimovic, David Mellis, and Björn Hartmann. 2016.
The Toastboard: Ubiquitous Instrumentation and
Automated Checking of Breadboarded Circuits. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16).
Association for Computing Machinery, New York, NY,
USA, 677–686. DOI:
http://dx.doi.org/10.1145/2984511.2984566

[9] Jerry Alan Fails and Dan R. Olsen. 2003. Interactive
Machine Learning. In Proceedings of the 8th
International Conference on Intelligent User Interfaces
(IUI ’03). Association for Computing Machinery, New
York, NY, USA, 39–45. DOI:
http://dx.doi.org/10.1145/604045.604056

[10] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha
Bajwa, Michael Specter, and Lalana Kagal. 2018.
Explaining Explanations: An Overview of
Interpretability of Machine Learning. (2018).

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press.
http://www.deeplearningbook.org.

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW217, Page 7

https://runwayml.com/
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00042
http://dx.doi.org/10.1145/2702123.2702509
http://dx.doi.org/10.1109/VLHCC.2019.8818751
https://developers.googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.html
https://developers.googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.html
https://github.com/fchollet/keras
http://dx.doi.org/10.1145/2984511.2984566
http://dx.doi.org/10.1145/604045.604056
http://www.deeplearningbook.org


[12] Tovi Grossman, George Fitzmaurice, and Ramtin
Attar. 2009. A survey of software learnability: metrics,
methodologies and guidelines. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. ACM, 649–658.

[13] A. Head, C. Appachu, M. A. Hearst, and B. Hartmann.
2015. Tutorons: Generating context-relevant,
on-demand explanations and demonstrations of online
code. In 2015 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). 3–12. DOI:
http://dx.doi.org/10.1109/VLHCC.2015.7356972

[14] C. Hill, R. Bellamy, T. Erickson, and M. Burnett. 2016.
Trials and tribulations of developers of intelligent
systems: A field study. In 2016 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC). 162–170. DOI:
http://dx.doi.org/10.1109/VLHCC.2016.7739680

[15] Apple Inc. 2019a. Apple Create ML. (2019). https://
developer.apple.com/machine-learning/create-ml/

[16] Databricks Inc. 2019b. MLFlow. (2019).
https://mlflow.org/

[17] S. C. Johnson. 1978. Lint, a C Program Checker. In
Technical Report. Bell Telephone Laboratories,
78–1273.

[18] Andrej Kaparthy. 2016. Training Neural Networks, Part
1. Convolutional Neural Networks for Visual
Recognition. Lecture Slides (20 January 2016).
http://cs231n.stanford.edu/2016/syllabus.html

[19] Andrej Kaparthy. 2019. A Recipe for Training Neural
Networks. (Apr 2019).
https://karpathy.github.io/2019/04/25/recipe/

[20] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie
Cai, James Wexler, Fernanda Viegas, and Rory

Sayres. 2017. Interpretability Beyond Feature
Attribution: Quantitative Testing with Concept
Activation Vectors (TCAV). (2017).

[21] Andrew J. Ko and Brad A. Myers. 2009. Finding
Causes of Program Output with the Java Whyline. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’09). Association
for Computing Machinery, New York, NY, USA,
1569–1578. DOI:
http://dx.doi.org/10.1145/1518701.1518942

[22] Alex Krizhevsky. 2009. Learning multiple layers of
features from tiny images. Technical Report.

[23] Lezhi Li and Yang Wang. 2019. Manifold: A
Model-Agnostic Visual Debugging Tool for Machine
Learning at Uber. (Aug 2019).
https://eng.uber.com/manifold/

[24] Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning Word Vectors for Sentiment Analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies. Association for
Computational Linguistics, Portland, Oregon, USA,
142–150.
http://www.aclweb.org/anthology/P11-1015

[25] Will McGrath, Daniel Drew, Jeremy Warner, Majeed
Kazemitabaar, Mitchell Karchemsky, David Mellis, and
Björn Hartmann. 2017. Bifröst: Visualizing and
Checking Behavior of Embedded Systems across
Hardware and Software. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’17). Association for Computing
Machinery, New York, NY, USA, 299–310. DOI:
http://dx.doi.org/10.1145/3126594.3126658

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW217, Page 8

http://dx.doi.org/10.1109/VLHCC.2015.7356972
http://dx.doi.org/10.1109/VLHCC.2016.7739680
https://developer.apple.com/machine-learning/create-ml/
https://developer.apple.com/machine-learning/create-ml/
https://mlflow.org/
http://cs231n.stanford.edu/2016/syllabus.html
https://karpathy.github.io/2019/04/25/recipe/
http://dx.doi.org/10.1145/1518701.1518942
https://eng.uber.com/manifold/
http://www.aclweb.org/anthology/P11-1015
http://dx.doi.org/10.1145/3126594.3126658


[26] David A. Mellis, Ben Zhang, Audrey Leung, and Björn
Hartmann. 2017. Machine Learning for Makers:
Interactive Sensor Data Classification Based on
Augmented Code Examples. In Proceedings of the
2017 Conference on Designing Interactive Systems
(DIS ’17). Association for Computing Machinery, New
York, NY, USA, 1213–1225. DOI:
http://dx.doi.org/10.1145/3064663.3064735

[27] Sugeerth Murugesan, Sana Malik, Fan Du, Eunyee
Koh, and Tuan Lai. 2019. DeepCompare: Visual and
Interactive Comparison of Deep Learning Model
Performance. IEEE Computer Graphics and
Applications PP (05 2019), 1–1. DOI:
http://dx.doi.org/10.1109/MCG.2019.2919033

[28] Glenford J. Myers, Corey Sandler, and Tom Badgett.
2011. The Art of Software Testing (3rd ed.). Wiley
Publishing.

[29] Augustus Odena, Catherine Olsson, David Andersen,
and Ian Goodfellow. 2019. TensorFuzz: Debugging
Neural Networks with Coverage-Guided Fuzzing. In
Proceedings of the 36th International Conference on
Machine Learning (Proceedings of Machine Learning
Research), Kamalika Chaudhuri and Ruslan
Salakhutdinov (Eds.), Vol. 97. PMLR, Long Beach,
California, USA, 4901–4911.
http://proceedings.mlr.press/v97/odena19a.html

[30] Chris Olah, Alexander Mordvintsev, and Ludwig
Schubert. 2017. Feature Visualization. Distill (2017).
DOI:http://dx.doi.org/10.23915/distill.00007
https://distill.pub/2017/feature-visualization.

[31] Google PAIR. 2019. What-if Tool. (2019).
https://pair-code.github.io/what-if-tool/

[32] Kayur Patel, Naomi Bancroft, Steven M. Drucker,
James Fogarty, Andrew J. Ko, and James Landay.

2010. Gestalt: Integrated Support for Implementation
and Analysis in Machine Learning. In Proceedings of
the 23nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’10). Association for
Computing Machinery, New York, NY, USA, 37–46.
DOI:http://dx.doi.org/10.1145/1866029.1866038

[33] Kayur Patel, James Fogarty, James A. Landay, and
Beverly Harrison. 2008. Investigating Statistical
Machine Learning as a Tool for Software Development.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’08). Association
for Computing Machinery, New York, NY, USA,
667–676. DOI:
http://dx.doi.org/10.1145/1357054.1357160

[34] Daniel Crankshaw Neeraja Yadwadkar
Joseph Gonzalez Rolando Garcia, Vikram Sreekanti.
2019. flor. (2019). https://github.com/ucbrise/flor

[35] Kaz Sato. 2016. How a Japanese cucumber farmer is
using deep learning and TensorFlow. (Aug 2016).
https://cloud.google.com/blog/products/gcp/how
-a-japanese-cucumber-farmer-is-using-deep-lear
ning-and-tensorflow

[36] Shital Shah, Roland Fernandez, and Steven M.
Drucker. 2019. A system for real-time interactive
analysis of deep learning training. In Proceedings of
the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS 2019, Valencia,
Spain, June 18-21, 2019. 16:1–16:6. DOI:
http://dx.doi.org/10.1145/3319499.3328231

[37] Jonathan R. Shewchuk. 2019. Concise Machine
Learning. (May 2019). https://people.eecs.berkel
ey.edu/~jrs/papers/machlearn.pdf

[38] Tom Simonite. 2018. The DIY Tinkerers Harnessing
the Power of Artificial Intelligence. (Nov 2018).

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW217, Page 9

http://dx.doi.org/10.1145/3064663.3064735
http://dx.doi.org/10.1109/MCG.2019.2919033
http://proceedings.mlr.press/v97/odena19a.html
http://dx.doi.org/10.23915/distill.00007
https://pair-code.github.io/what-if-tool/
http://dx.doi.org/10.1145/1866029.1866038
http://dx.doi.org/10.1145/1357054.1357160
https://github.com/ucbrise/flor
https://cloud.google.com/blog/products/gcp/how-a-japanese-cucumber-farmer-is-using-deep-learning-and-tensorflow
https://cloud.google.com/blog/products/gcp/how-a-japanese-cucumber-farmer-is-using-deep-learning-and-tensorflow
https://cloud.google.com/blog/products/gcp/how-a-japanese-cucumber-farmer-is-using-deep-learning-and-tensorflow
http://dx.doi.org/10.1145/3319499.3328231
https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf
https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf


https://www.wired.com/story/diy-tinkerers-arti
ficial-intelligence-smart-tech/

[39] John T Stasko, Marc H Brown, and Blaine A Price.
1997. Software Visualization. MIT press.

[40] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017.
Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. (2017).

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW217, Page 10

https://www.wired.com/story/diy-tinkerers-artificial-intelligence-smart-tech/
https://www.wired.com/story/diy-tinkerers-artificial-intelligence-smart-tech/

	Introduction
	Related Work
	Interactive ML Development
	Software Engineering Support Tools
	Model Visualization and Inspection Tools
	Explanations and Interpretability


	Design Considerations
	Using Scram 
	Implementation
	Model Checking Heuristics and Error Messages

	Inital User Experiences
	Future Work and Conclusion
	Acknowledgements
	REFERENCES 



