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Figure 1: Example interaction between Scones and a human user. Scones can iteratively generate and refne sketched scenes 
given users’ text instructions. 

ABSTRACT 
Iteratively refning and critiquing sketches are crucial steps to de-
veloping efective designs. We introduce Scones, a mixed-initiative, 
machine-learning-driven system that enables users to iteratively 
author sketches from text instructions. Scones is a novel deep-
learning-based system that iteratively generates scenes of sketched 
objects composed with semantic specifcations from natural lan-
guage. Scones exceeds state-of-the-art performance on a text-based 
scene modifcation task, and introduces a mask-conditioned sketch-
ing model that can generate sketches with poses specifed by high-
level scene information. In an exploratory user evaluation of Scones, 
participants reported enjoying an iterative drawing task with Scones, 
and suggested additional features for further applications. We be-
lieve Scones is an early step towards automated, intelligent systems 
that support human-in-the-loop applications for communicating 
ideas through sketching in art and design. 

CCS CONCEPTS 
• Human-centered computing → Natural language interfaces;
• Computing methodologies → Neural networks; Computer
vision tasks.
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1 INTRODUCTION 
Sketching is a powerful communication medium, as even rough 
drawings can richly communicate the intent of artists, designers, 
and engineers. These practitioners use sketches as a tool to itera-
tively present, critique and refne ideas. However, creating sketches 
that efectively communicate ideas visually requires signifcant 
training. Furthermore, the use of sketches in an iterative design 
process, where the sketch itself is annotated or refned, requires 
additional, specialized expertise. 

Recently developed Machine Learning (ML) models have illu-
minated how intelligent systems can participate in the sketching 
and critique processes, e.g., by generating sketches for single ob-
jects [7], and using natural language to create images [8]. However, 
the broader interaction of iteratively critiquing and refning com-
plex sketches comprising multiple objects poses several additional 
challenges. For this task, a system would need to unify knowledge 
of the low-level mechanics for generating sketch strokes and natural 
language modifcation instructions with a high-level understanding 
of composition and object relationships in scenes. 

In this paper, we introduce Scones, an intelligent system for 
iteratively generating and modifying scenes of sketched objects 
through text instructions. Our contribution is three-fold: 
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• We formulate the novel interaction of iteratively generating 
and refning sketches with text instructions and present a 
web-deployable implementation of Scones to support this 
interaction. 

• We contribute a scene composition proposer, a component 
of our system that takes a novel approach in creating and 
editing scenes of objects using natural language. It adapts a 
recent neural network architecture and improves state-of-
the-art performance on the scene modifcation task. 

• We introduce a novel method for specifying high-level scene 
semantics within individual object sketches by conditioning 
sketch generation with mask outlines of target sketches. 

We evaluate our intelligent user interface on an iterative sketch-
ing task with 50 participants, where each was asked to use text 
instructions to create a scene matching a target output. Our results 
show participants enjoyed the task and were generally satisfed 
with the output of Scones. Participants also provided feedback for 
improving Scones in future iterations. 

Our ultimate goal for Scones is to support creative processes by 
facilitating the iterative refnement of complex sketches through 
natural language. Combining these modalities is a fundamental 
part of our contributions, as this allows users to freely express 
their intent using abstract, text-based instructions, together with 
concrete visual media. 

2 RELATED WORK 
Scones builds upon related work in four key areas: (1) deep neural 
networks that generate sketches and scenes, and corresponding 
datasets they were trained on; (2) sketching support tools that refne 
and augment sketch inputs; (3) machine-learning-based applica-
tions that support image generation from drawing input; and, (4) 
interfaces that use natural language to interact with visual data. 

2.1 Neural Sketch Generation and Large-scale 
Sketch Datasets 

Recent advancements in the ML community introduced deep neural 
networks capable of recognizing and generating sketches. Sketch-
RNN [7] is one of the frst RNN-based models that can generate 
sequential sketch strokes through supervised learning on sketching 
datasets. Generative Adversarial Networks (GANs) have also been 
used to translate realistic images into sketches (or edges) at the pixel 
level by training on paired [18] and unpaired [35] sketch and image 
data. While these methods are well-suited for generating sketches of 
individual objects or stylizing images, they do not encode high-level 
semantic information of a scene. Sketchforme takes a two-stage 
approach to generate sketches of scenes comprising multiple objects 
by frst generating a high-level scene layout from text input, and, 
next, flling the layout with object sketches [9]. 

These ML techniques rely heavily on large-scale sketching datasets. 
The Quick, Draw! [12] and TU-Berlin [4] datasets consist of human-
drawn sketches for 345 and 250 object classes respectively. SketchyDB 
provides paired images and simple sketches for retrieval tasks [25]. 
The SketchyScene dataset consists of sketched scenes of pre-drawn 
objects transformed and resized by humans, as scene sketches are 
highly demanding for users to create from scratch [36]. 

Scones builds upon the Sketch-RNN model and Sketchforme’s 
generation process to support progressive, iterative generation and 
conditional modifcation of sketched scenes from natural language, 
a novel machine-learning-driven user interaction. Scones uses a 
Transformer network [30] with a shared natural language and scene 
information embedding, and is trained on the CoDraw dataset [15] 
to learn high-level relationships between objects in scenes and text 
instructions. 

2.2 Interactive Sketching Tools 
Research in the Human-Computer Interaction (HCI) community 
has produced interfaces that use drawing input for creating inter-
active media and prototypes. SILK enables users to annotate user 
interface mockup sketches to create interactive prototypes [16]. 
Other work adapts these metaphors for creating interactive, ani-
mated images from drawings [14]. Closely related to our domain, 
DrawAFriend uses crowdsourced data through a Game With a Pur-
pose (GWAP) [31] to refne and correct users’ sketch strokes [19]. 
PixelTone additionally uses natural language speech input to apply 
flters to annotated images [17]. Most relevant to Scones, Ribeiro 
and Igarashi introduced a two-way sketch-based communication 
game for users to iteratively edit sketches using a direct manipu-
lation interface [24]. Scones uses natural language input to create 
and modify sketches, rather than requiring direct pen stroke input. 

2.3 Interactive Image Generation 
Researchers have also explored interactive image generation, par-
ticularly for GAN-based methods. iGAN flls user-provided outlines 
with generated image textures [34]. More recent work has enabled 
fner-grained control of the output by providing tools for drawing 
semantic maps for generating artwork [3] and photorealistic im-
ages [20]. These approaches have also been extended to fll users’ 
drawn outlines with image textures [6] and to generate realistic 
clothing items in a user-specifc recommender system [13]. While 
these methods allow users to control the content of and iteratively 
add to generated images, they rely on a direct visual-to-visual map-
ping between input and output media to transfer user intent to 
the canvas. In contrast, Scones uses a language-to-visual mapping, 
enabling users to add to and modify sketches using natural lan-
guage, a higher-level medium that allows for variation within user 
specifcations. 

2.4 Interfaces Supporting Natural Language 
Interactions with Visual Data 

Several novel user interfaces and ML models have been developed 
to use natural language input in interactive visual tasks, with a 
language-to-visual mapping. An example ML challenge in this do-
main is Visual Question Answering (VQA), where a model is pro-
vided with a target image and a natural language question as input, 
and outputs a response predicated on visual, lingual, and common-
sense knowledge [1]. Other challenges extend this by requiring 
justifcation of the response [11, 33], or the truthfulness of an in-
put statement relating two images [28]. These questions in these 
challenges can be answered by ML architectures such as Relation 
Networks (RNs), which infer object relationships from the out-
puts of RNNs and Convolutional Neural Networks (CNNs) [26]. 
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Alternatively, VizWiz deploys just-in-time crowdsourcing tasks to 
answer open-ended questions about an image for visually impaired 
users [2]. 

Deep learning models have been used for image retrieval from 
natural language captions [5], and algorithmic approaches have 
been used for searching within videos [21]. Adaptive interfaces 
can also draw correspondence between language and visual block 
manipulation tasks [32]. Fashion interfaces which recommend items 
from natural language specifcations [27] or by connecting users to 
stylists through a chatbot [29] require knowledge of items’ semantic 
and visual features, as well as highly variant user preferences. 

Scones also uses a language-to-visual mapping, adapting a state-
of-the-art deep neural network to use natural language input for a 
novel visual output task: interactive sketch creation and modifca-
tion. 

3 SYSTEM ARCHITECTURE 
The creation of complex sketches often begins with semantic plan-
ning of scene objects. Sketchers often construct high-level scene 
layouts before flling in low-level details. Modeling ML systems af-
ter this high-to-low-level workfow has been benefcial for transfer 
learning from other visual domains and for supporting interactive 
interfaces for human users [9]. Inspired by this high-to-low-level 
process, Scones adopts a hierarchical workfow that frst proposes 
a scene-level composition layout of objects using its Composition 
Proposer, then generates individual object sketches, conditioned on 
the scene-level information, using its Object Generators (Figure 2). 

put a campfire under the hot air 
balloon

Composition 
Proposer

Object 
Generators

1) Previous Scenes

2) Text Instruction

... ...

x n

Figure 2: Overall Architecture of Scones. Scones takes a two-
stage approach towards generating and modifying sketched 
scenes based on users’ instructions. 

3.1 Composition Proposer 
The Composition Proposer in Scones uses text instructions to place 
and confgure objects in the scene. It also considers recent past it-
erations of text instructions and scene context at each conversation 
turn. As text instructions and sketch components occur sequentially 
in time, each with a variable length of tokens and objects, respec-
tively, we formulate composition proposal as a sequence modeling 
task. We use a decoder-only Transformer model architecture sim-
ilar to GPT-2 [23], a recent deep-learning-based model with high 
performance. 

To produce the output scene Si at turn i , the Composition Pro-
poser takes inputs of n = 10 previous scenes S(i−n), ...,(i−1) and 
text instructions C(i−n), ...,(i−1) as recent context of the conversa-
tion. Each output scene Si contains li objects o(i,1), ...,(i,li ) ∈ Si
and special tokens os marking the beginning and oe marking the 
end of the scene. Each text instruction Ci contains mi text tokens 
t(i,1), ...,(i,mi ) ∈ Ci that consists of words and punctuation marks.

We represent each object o as a 102-dimensional vector o = 
[1s , 1e , e(o), e(u), e(s), e(f ), x ,y]. The frst two dimensions 1s , 1e are 
Boolean attributes reserved for the start and end of the scene object 
sequences. e(o) is a 58-dimensional one-hot vector1 representing 
one of 58 classes of the scene objects. e(u) is a 35-dimensional 
one-hot vector representing one of 35 sub-types (minor variants) 
of the scene objects. e(s) is a three-dimensional one-hot vector 
representing one of three sizes of the scene objects. e(f ) is a two-
dimensional one-hot vector representing the horizontal orientation 
of whether the object is fipped in the x-direction. The last two 
dimensions x ,y ∈ [0, 1] represents the x and y position of the 
center of the object. This representation is very similar to that of 
the CoDraw dataset the model was trained on, described in detail in 
Section 4.1. For each text token t , we use a 300-dimensional GLoVe 
vector trained on 42B tokens from the Common Crawl dataset [22] 
to semantically represent these words in the instructions. 

To train the Transformer network with the heterogeneous in-
puts of o and t across the two modalities, we create a unifed rep-
resentation of cardinality |o | + |t | = 402 and adopt o and t to this 
representation by simply padding additional dimensions in the 
representations with zeros as shown in Equation 1. 

′ ′ oi, j = [oi, j , 0®(300)] ti, j = [0®(102), ti, j ] (1) 
We interleave text instructions and scene objects chronologi-

cally to form a long sequence [C(i−n), S(i−n) , ...,C(i−1), S(i−1),Ci ]
as input to the model for generating an output scene representa-
tion Si . We expand the sequential elements within C and S , and 
add separators to them to obtain the full input sequence to a single 
Transformer Decoder. To adapt the Transformer model to our multi-
modal inputs t ′ and o ′ and produce new scene objects o, we employ 
a 402-dimensional input embedding layer and 102-dimensional out-
put embedding layer in the Transformer model. The outputs from 
the network are then passed to sigmoid and softmax activations 
for object position and other properties respectively. We show this 
generation process in Equation 2 and in Figure 3. 

′ ′ ′Si = [o(i,1), ...,(i,l )] = Transformer([os , o(i−n,1), ...o(i−n,l(i −n)),
′ ′ ′ ′ ′ ′ oe , t(i−n,1), ..., t(i−n,m(i −n))

, ..., t
(i,1), ...t(i,li ), o ]) (2)s 

(64, 6) Transformer Decoder

o’(i, 1) o’eo’s o’(i+1, 1)o’s

o’(i+1, 1)    o’(i+1, 2)

t’(i, 1)o’(i, l ) t’(i, m ) o’(i+1, l    )

o’e

(scene start) (scene end)

... ... ...

baseball left

 i  i   i+1

Figure 3: The Scene Layout Generation Process using the 
Transformer Model of the Composition Proposer. 

1an encoding of class information that is an array of bits where only the corresponding 
position for the class to be encoded is 1, and all other bits are 0s. 
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3.2 Object Generators 
Since the outputs of the Composition Proposer are scene layouts 
consisting of high-level object specifcations, we generate the fnal 
raw sketch strokes for each of these objects based on their specif-
cations with Object Generators. We adopt Sketch-RNN to generate 
sketches of individual object classes to present to users for eval-
uation and revision in the next conversation turn. Each sketched 
object Q consists of h strokes q1...h . The strokes are encoded using 
the Stroke-5 format [7]. Each stroke q = [∆x , ∆y, pd ,pu ,pe ] repre-
sents states of a pen performing the sketching process. The frst two 
properties ∆x and ∆y are ofsets from the previous point that the 
pen moves from. The last three elements [pd , pu , pe ] are a one-hot 
vector representing the state of the pen after the current point (pen 
down, pen up, end of sketch, respectively). All sketches begin with 
the initial stroke q1 = [0, 0, 1, 0, 0]. 

Since Sketch-RNN does not constrain aspect ratios, directions 
and poses of its output sketches, we introduce two additional condi-
tions for the sketch generation process: masks m and aspect ratios r . 
These conditions ensure our Object Generators generate sketches 
with appearances that follow the object specifcations generated by 
the Composition Proposer. For each object sketch, we compute the 

∆y
aspect ratio r = by taking the distance between the leftmost 

∆x
and rightmost stroke as ∆x and the distance between topmost and 
bottommost stroke as ∆y. To compute the object mask m, we frst 
render the strokes into a pixel bitmap, then mark all pixels as 1 if 
they are in between the leftmost pixel pyxmin and rightmost pixel 
pyxmax that are passed through by any strokes for each row y, or 
if they are in between the bottommost pixel pxymin and topmost 
pixel pxymax that are passed through by any strokes for each col-
umn x (Equation 3). As this mask-building algorithm only involves 
pixel computations, we can use the same method to build masks for 
clip art objects (used to train the Composition Proposer) to generate 
sketches with poses matching the Composition Proposer’s object 
representations. 

Encoder

q1
Hyper
LSTM

q2 qh

q’1

q’2

GMM

q’3

GMM

q’h

GMM

q’2 q’h-1

Hyper
LSTM

Hyper
LSTM

z

Bi-
LSTM

Bi-
LSTM Decoder

...

...

Bi-
LSTM

Bi-
LSTM

Bi-
LSTM

CNN

Δy

Δx

Δy
Δx

= r
q1...h

m

Figure 4: Sketch-RNN Model Architecture of the Object Gen-
erators. 

outputs parameters for a Gaussian Mixture Model (GMM) which 
will be sampled to obtain ∆x and ∆y. It also outputs probabilities 
for a categorical distribution that will be sampled to obtain pd , pu
and pe . This generation process and the architecture of the model 
are illustrated in Figure 4, and are described in the Sketch-RNN 
paper [7]. 

4 DATASETS AND MODEL TRAINING 
As Scones uses two components to generate scenes of sketched 
objects, it is trained on two datasets that correspond to the tasks 
these components perform. 

4.1 CoDraw Dataset 
We used the CoDraw dataset to train the Composition Proposer to 
generate high-level scene layout proposals from text instructions. 
The task used to collect this data involves two human users taking 
on the roles of Drawer and Teller in each session. First, the Teller 

1 if pyxmax ≥ x ≥ pyxmin , or; is presented with an abstract scene containing multiple clip art 
1 if pxymax ≥ y ≥ pxymin (3) objects in certain confgurations, and the Drawer is given a blank

otherwise 
=m(x,y) 

  0 canvas. The Teller provides instructions using only text in a chat
interface to instruct the Drawer on how to modify clip art objects
in the scene. The Teller has no access to the Drawer’s canvas in

We adopt the Variational-Autoencoder(VAE)-based conditional 
variant of Sketch-RNN to enable generating and editing of sketch ob-

most conversation turns, except in one of the turns when they canjects. Our adopted conditional Sketch-RNN encodes input sketches 
decide to ‘peek’ at the Drawer’s canvas. The dataset consists ofwith a Bi-directional LSTM to a latent vector z. The Hyper-LSTM 
9993 sessions of conversation records, scene modifcations, and
ground-truth scenes.

Using this dataset, we trained the Composition Proposer to re-
spond to users’ instructions given past instructions and scenes. We
used the same training/validation/test split as the original dataset.
Our model is trained to optimize the loss function Lcm that cor-
responds to various attributes of the scene objects in the training
set:

Lcm = Lc + λsubLsub + λfipLfip + λsizeLsize + λxy Lxy (5) 

Lc is the cross-entropy loss between the one-hot vector of the 
true class label and the predicted output probabilities by the model. 
Similarly Lfip and Lsize are cross-entropy losses for the horizontal 

′decoder then recreates sketch strokes q from z, and m, r de-1...h
scribed above during training, as defned in Equation 4 and shown 
in Figure 4. Since the latent space is also trained to match a multi-
variate Gaussian distribution, the Object Generator can support 
sketch generation when the objects are frst added to the scene by 
randomly sampling z ∼ N (0, 1)128. 

′ q = Sketch-RNN Decoder([m, r , z]), z ∼ N (0, 1)1281...h 
z = Sketch-RNN Encoder(q1...h ) (4) 

As m is a two-dimensional mask, we encode m using a small 
convolutional neural network into a fattened embedding to be con-
catenated with z, r and qi as inputs to the decoder. The decoder then 
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orientation and size of the object. Lxy is the Euclidean Distance 
between predicted position and true position of the scene object. 
We trained the model using an Adam Optimizer with the learning 
rate of lr = 1 × 10−4 for 200 epochs. We set λsub = 5.0 × 10−2,
λfip = 5.0 × 10−2, λsize = 5.0 × 10−2, λxy = 1.0. These hyper-
parameters were tuned based on empirical experiments on the 
validation split of the dataset. 

4.2 Quick, Draw! Dataset 
The Quick, Draw! dataset consists of sketch strokes of 345 concept 
categories created by human users in a game in 20 seconds. We 
trained our 34 Object Generators on 34 categories of Quick, Draw! 
data to create sketches of individual sketched objects. 

Each sketch stroke in Quick, Draw! was frst converted to the 
Stroke-5 format. ∆xs and ∆ys of the sketch strokes were normalized 
with their standard deviations for all sketches in their respective 
categories. Each category consists of 75000/2500/2500 sketches in 
the training/validation/test set. 

The loss function of the conditional Sketch-RNN Ls consists of 
the reconstruction loss LR and KL loss LKL : 

Ls = λKLLKL + LR (6) 

The KL loss LKL is the KL divergence between the encoded 
z from the encoder and N (0, 1)128. The reconstruction loss LR is
the negative log-likelihood of the strokes under the GMM and 
a categorical distribution parametrized by the model. We refer 
interested readers to a detailed description of Ls in the original 
Sketch-RNN paper [7]. The initial learning rate of the training 
procedure was lr = 1.0 × 10−3 and exponentially decayed to 1.0 × 
10−5 at a rate of 0.9999. λKL was initially 0.01 and exponentially
increased to 0.5 at a rate of 0.99995. The models were also trained 
with gradient clipping of 1.0. 

5 RESULTS 
To compare the efectiveness of Scones at generating scene sketches 
with existing models and human-level performance, we quantita-
tively evaluated its performance in an iterative scene authoring 
task. Moreover, as Scones uses generative models to produce object 
sketches, we qualitatively evaluated a large number of examples 
generated by various stages in Scones. 

5.1 Composition Modifcation State-of-the-art 
To evaluate the output of the Composition Proposer against the 
models introduced with the CoDraw dataset, we adapted its output 
to match that expected by the well-defned evaluation metrics pro-
posed by the original paper [15]. The original task described in the 
CoDraw paper involves only proposing and modifying high-level 
object representations in scenes agnostic to their appearance. The 
performance of a “Drawer” (a human or machine which generates 
a scene composition) can be quantifed by a similarity metric con-
strained between 0 and 5 (higher is more similar) by comparing 
properties of and relations between objects in the generated scene 
and objects in the ground truth from the dataset. 

Running our Composition Proposer on the CoDraw test set, 
we achieved an average similarity metric of 3.55. This exceeded 

existing state-of-the-art performance (Table 1) on the iterative scene 
authoring task using replayed text instructions from CoDraw. 

Table 1: Performance of Various Models on CoDraw Task 

Teller Drawer Similarity ↑ (out of 5) 

Script Scones 3.55 
Script Neural Network [15] 3.39 
Script Nearest-Neighbour [15] 0.94 

Script Human 3.83 

To provide an illustrative example of our Composition Proposer’s 
output on this task, we visualize two example scenes generated 
from the CoDraw validation set in Figure 5. In the scene a), the 
Composition Proposer extracted the class (slide), direction (faces 
right), and position relative to parts of the object (ladder along 
left edge) from the text instruction, to place a slide in the scene. 
Similarly, it was able to place the bear in between the oak and pine 
trees in scene b), with the bear touching the left edge of the pine 
tree. It is important to note the Composition Proposer completely 
regenerates the entire scene at each conversation turn. This means 
it correctly preserved object attributes from previous scenes while 
making the requested modifcations from the current turn. In these 
instances, the sun in scene a) and the trees in scene b) were left 
unchanged while other attributes of the scenes were modifed. 

Current Scene Modified SceneText Instruction

large slide . faces right . 
ladder along left edge . 
horizon above third 
rung .

sun sun

slide

just a little to the right 
of the left edge . to the 
right of the oak tree is a 
large bear about a 1 4 
(¼)  inch form(from) the 
trunk

oak tree

oak tree

bear

pine treepine tree

a) 

b) 

Figure 5: Example Scenes for the Scene Layout Modifca-
tion Task. The Composition Proposer was able to achieve 
state-of-the-art performance for modifying object represen-
tations in scene compositions. 

5.2 Sketches with Clip Art Objects as Mask and 
Ratio Guidance 

The Object Generators are designed to generate sketches which 
respect high-level scene layout information under the guidance of 
the mask and aspect ratio conditions. To inform generated object 
sketches with pose suggestions from scene composition layouts, 
we built outline masks from clip art objects and computed aspect 
ratios using the same method as building them for training sketches 
described in Section 3.1. We demonstrate the Object Generator’s 
performance in two important scenarios that allow Scones to adapt 
to specifc pose and subclass contexts. 
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5.2.1 Generating objects for closely related classes. While the Com-
position Proposer classifes objects as one distinct class out of 58, 
some of these classes are closely related and are not diferentiated 
by the Object Generators. In these cases, object masks can be used 
by an Object Generator to efectively disambiguate the desired out-
put subclass. For instance, the Composition Proposer generates 
trees as one of three classes: Oak tree (tall and with curly edges), 
Apple tree (round and short), and Pine tree (tall and pointy); while 
there is only a single Object Generator trained on a general class 
of all types of tree objects. We generated three diferent masks and 
aspect ratios based on three clip art images and used them as inputs 
to a single tree-based Object Generator to generate appropriate 
tree objects (by sampling z ∼ N (0, 1)128). The Object Generator 
was able to sketch trees with confgurations corresponding to input 
masks from clip art objects (Figure 6). The generated sketches for 
pine trees were pointy; for apple trees, had round leaves; and for 
oak trees, had curvy edges. 

Clip Art Mask Generated Sketches

Figure 6: Sketch Generation Results of Trees Conditioned 
on Masks. The Object Generator was able to sketch trees of 
three diferent classes based on mask and aspect ratio in-
puts. 

5.2.2 Generating objects with direction-specific poses. The Compo-
sition Proposer can specify the horizontal orientation of the objects 
(pointing left or right). As such, the Object Generators are required 
to sketch horizontally asymmetric objects (e.g., racquets, airplanes) 
with a specifc pose to follow users’ instructions. We show the 
ability of Object Generators to produce racquets at various orien-
tations in Figure 7. The generated racquet sketches conformed to 
the orientation of the mask, facing the specifed direction at similar 
angles. 

5.3 Complete Sessions with Composition 
Layouts and Sketches 

We show the usage of Scones in six turns of conversation from mul-
tiple sessions in Figure 8 and Figure 1. We curated these sessions 
by interacting with the system ourselves to demonstrate various 
capabilities of Scones. In session a), Scones was able to draw and 
move the duck to the left, sketch a cloud in the middle, and place 
and enlarge the tree on the right, following instructions issued by 
the user. In session b), Scones was similarly able to place and move 

Clip Art Mask Generated Sketches

Figure 7: Sketch Generation Results of Racquets Condi-
tioned on Masks. The Object Generator was able to sketch 
racquets at two orientations consistent to the masks. 

a cat, a tree, a basketball and an airplane, but at diferent positions 
from session a). For instance, the tree was placed on the left as 
opposed to the right, and the basketball was moved to the bottom. 
We also show the ability of Scones to fip objects horizontally in 
session b), such that the plane was fipped horizontally and regen-
erated given the instructions of “fip the plane to point to the right 
instead”. This fipping action demonstrates the Object Generator’s 
ability to generate objects with the require poses by only sharing 
the latent vectors z, such that the fipped airplane exhibits similar 
characteristics as the original airplane. In both sessions, Scones was 
able to correlate multiple scene objects, such as placing the owl on 
the tree, and basketball under the tree in session b). 

Moreover, we discover that Scones was able to handle more 
advanced instructions, such as generating multiple objects at once. 
In Figure 1, other than basic enlarging and moving commands for 
the pizza and the helicopter, Scones was able to sketch both the 
sun and the cloud onto the scene, at positions satisfying the frst 
instruction. It was also able to sketch a table directly under the 
pizza with the instruction ‘put the pizza on a table’. 

5.4 Interpreting Transformer’s Attention Maps 
We can further verify the relationship between text and object rep-
resentations learned by the model by visualizing attention weights 
computed by the Transformer model of the Composition Proposer. 
These weights also create the unique possibility of generalizing and 
prompting for sketches of new objects specifed by users. 

The Transformer model in the Composition Proposer uses masked 
self-attention to attend to scene objects and instructions from pre-
vious time steps most relevant to generating an object specifcation 
at the current turn. We explore the attention weights of the frst 
two turns of a conversation from the CoDraw validation set. In the 
frst turn, the user instructed the system, “top left is an airplane 
medium size pointing left”. When the model generated the frst 
object, it attended to the “airplane” and “medium” text tokens to 
select class and output size. In the second turn, the user instructed 
the model to place a slide facing right under the plane. The model 
similarly attended to the “slide” token the most, while also signif-
icantly attended to the “under”, and “plane” text tokens, and the 
plane object, which are useful for situating the slide object at the 
desired location relative to an existing airplane object (Figure 10). 
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draw a duck in the middle

move the duck to the left

add a cloud in the middle

put a tree on the right

make the tree larger

there is an owl on the tree

there is a cat on the bottom right

draw a tree on the left

add a basketball under the tree

move the basketball lower

put a small airplane near the tree

flip the plane to point to the 
right instead

Scones SconesUserUser

a) b) 

Figure 8: Complete Sketching Sessions with Scones curated 
by the authors. 
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Figure 10: Attention Map of the Transformer across Object 
and Text Tokens for the Generation of Slide in the Second 
Turn of Conversation. We observed that the Transformer 
model attended to the corresponding words and objects that 
describe objects in the scene related to the newly generated 
‘slide’ object. 

These attention weights could be used to handle unknown scene 
objects encountered in instructions. When the model does not out-
put any scene objects, but only a oe (scene end) token, we can 
inspect the attention weights for generating this token to identify 
a potentially unknown object class, and ask the user for clarifca-
tion. For example, when users request unsupported classes, such 
as a ‘sandwich’ or ‘parrot’ (Figure 11), Scones could identify this 
unknown object by taking the text token with the highest attention 
weight, and prompting the user to sketch it by name. 

<start> <end> add a sandwich to the scene . <start>

<start> <end> there is a parrot on the top left . <start>

0.392 1.396

0.227 1.526

Figure 11: Attention Map of the Transformer for Text In-
structions that Specifes Unseen Objects. 

6 EXPLORATORY EVALUATION 
To determine how efectively Scones can assist users in creating 
sketches from natural language, we conducted an exploratory evalu-
ation of Scones. We recruited 50 participants from English-speaking 
countries on Amazon Mechanical Turk (AMT) for our study. We 
collected quantitative and qualitative results from user trials with 
Scones, as well as suggestions for improving Scones. Participants 
were given a maximum of 20 minutes to complete the study and 
were compensated $3.00 USD. Participants were only allowed to 
complete the task once. 

Object in the Scene. 

IUI ’20, March 17–20, 2020, Cagliari, Italy 
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6.1 Method 
Participants asked to recreate one of fve randomly chosen target 
scene sketches by providing text instructions to Scones in the chat 
window. Each target scene had between four and fve target objects 
from a set of 17 scene objects. Participants were informed that the 
fnal result did not have to be pixel perfect to the target scene, and 
to mark the sketch as complete once they were happy with the 
result. Instructions supplied in the chat window were limited to 500 
characters, and submitting an instruction was considered as taking 
a “turn”. The participants were only given the sketch strokes of the 
target scene without class labels, to elicit natural instructions. 

Figure 12: Screenshot of Scones’s Evaluation User Interface. 

Participants were frst shown a short tutorial describing the 
canvas, chat interface, and target scene in the Scones interface 
(Figure 12), and were asked to give simple instructions in the chat 
window to recreate the target scene. Only two sample instructions 
were given in the background image of the tutorial: “add a tree”, and 
“add a cat next to the table”. At each turn, participants were given 
the option to redraw objects which remained in the scene for over 
three turns using a paintbrush-based interface. After completing 
the sketch, participants flled out an exit survey with likert-scale 
questions on their satisfaction at the sketch and enjoyment of the 
system, and open-ended feedback on the system. 

6.2 Results 
6.2.1 Participants Satisfied with Sketches, Enjoyment Was Bimodal. 
Participants were generally satisfed with their fnal sketches (µ = 
3.38, σ = 1.18), and enjoyed the task (µ = 4.0, σ = 1.12). In 
open-ended feedback, participants praised Scones’s ability to parse 
their instructions: “it was able to similarly recreate the image with 
commands that I typed” (P25); “I liked that it would draw what I 
said. it was simple and fun to use” (P40). Some participants even 
felt Scones was able to intuitively understand their instructions. 
P15 remarked, “I thought it was cool how quickly and intuitively it 
responded,” while P35 said, “It had an intuitive sense of what to draw, 
and I did not feel constrained in the language I used”. 

While enjoyment was high on average, we found responses to 
enjoyment followed a bimodal distribution (Figure 13). By reviewing 

qualitative feedback and instructions to Scones, we observe that 
many instances of low enjoyment (score ≤ 2) come from class 
confusion in the target scene sketch. Some participants confused 
the tent in a target scene as a “pyramid” in their instructions, which 
Scones does not support: “There is a pyramid on the left side a 
little ways up from the bottom” (P44). P49 tried fve times to add a 
“pyramid” to the scene. 
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Figure 13: Survey Results from User Sessions with Scones. 

P17, who strongly disagreed with enjoying the task (1/5), faced 
repeated class confusion issues, mentioning, “it was very frustrating 
that it wouldn’t draw the circle by the cloud . . . It wouldn’t draw any-
thing besides the plane, cloud, tent, and fre. Was that not a person up 
by the cloud?” Scones does not support “circle” or “person” classes— 
the target sketch had the sun next to the cloud. When Scones is 
asked to draw an unsupported object, the canvas will be left un-
changed. Providing participants with an explicit list of classes in 
the target image or adding error messages could mitigate these 
frustrations. Furthermore, attention-based methods mentioned in 
Section 5.4 could be used when an unrecognized class is detected to 
prompt users to provide sketch strokes with a corresponding label. 

6.2.2 Participants Communicate with Scones at Varying Concept Ab-
straction Levels. On average, participants completed the sketching 
task in under 8 turns (µ = 7.56, σ = 3.42), with a varied number of 
tokens (words in instructions) per turn (µ = 7.66, σ = 3.35). Several 
participants only asked for the objects themselves (turns delimited 
by commas): “helicopter, cloud, swing, add basketball” (P25). Other 
participants made highly detailed requests: “There is a sun in the 
top left, There is an airplane fying to the right in the top right corner, 
There is a cat standing on it’s hind legs in the bottom right corner, 
Move the cat a little to the right, please, . . . ” (P14). Participants who 
gave instructions at the expected high-level detail produced satis-
fying results, “draw a tree in the middle, Draw a sun in the top left 
corner, A plane in the top right, A cat with a pizza under the tree” 
(P32). The recreation of this participant is shown on the top right 
of Figure 14. 

The longest conversations were often from participants with 
mismatched expectations for Scones, who repeated commands: 
“Draw a cloud in the upper left corner with three round edges., Change 
the cloud to have 3 round edges., Draw only 3 round waves around 
the edge of the cloud., . . .Draw a snowman to the left of the table., 
. . .Draw a circle touching the middle circle., . . . ” (P23). This trial 
refects the need for Scones to make clearer expectations of input 
to users. P23’s 16-instruction session contains expectations for the 
system to modify low-level aspects of the sketches (changing the 
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Target User Recreations

Figure 14: Recreated Scenes during the User Study. Users 
combined Scones-generated outputs with their own sketch 
strokes to reproduce the target scenes presented to them. 

number of edges in the cloud), exhibits class confusion (snowman 
and circles with shovel), and has mismatched concept abstraction 
levels (drawing a shovel versus constructing a shovel from visual 
primitives, i.e., circles). A potentially simple mitigation for these 
hurdles would be to introduce more detailed tutorial content for a 
wider deployment of Scones. 

6.2.3 Scones as a Tool for Collecting Iterative Sketching Data. The 
results of our study show signifcant potential for Scones to be used 
as a Game With a Purpose (GWAP) [31] to collect sketch critiques 
(natural language specifed modifcations to an input sketch to 
match a target sketch) and user-generated sketching strokes. 26 (52% 
of) participants redrew objects in their sketches when prompted 
(µ = 0.98, σ = 1.19), and participants who redrew objects expressed 
their appreciation for this feature: “I liked that I could redraw the 
image” (P48); “I liked being able to draw parts myself because it was 
relaxing and I felt I was more accurate” (P11). Most participants 
who redrew objects also kept output from Scones in their fnal 
sketches, refecting Scones’s potential as a mixed-initiative design 
tool. Redrawing was voluntary in our task, and these results suggest 
Scones may be useful for collecting user-generated sketches in 
addition to natural language critique in a GWAP. Further motivating 
this application, 14 participants described the task as “fun” in open-
ended feedback, e.g., “This was a very fun task” (P23); “(I liked) 
Playing the game and describing the drawing. It was fun!” (P42). 

6.3 Participants’ Feedback for Improving 
Scones 

Participants ofered suggestions for how they would improve Scones, 
providing avenues for future work. 

6.3.1 Object Translations and Spatial Relationships. A major theme 
of dissatisfaction came from the limited ability of our system to re-
spond to spatial relationships and translation-related instructions at 
times: “It does not appear to understand spatial relationships that well” 
(P35); “you are not able to use directional commands very easily” (P11). 
These situations largely originate from the CoDraw dataset [15], in 
which users had a restricted view of the canvas, resulting in limited 

relative spatial instructions. This limitation is discussed further in 
Section 7.3. 

To improve the usability of Scones, participants suggest its inter-
face could beneft from the addition of direct manipulation features, 
such as selecting and manually transforming objects in the scene: 
“I think that I would maybe change how diferent items are selected 
in order to change of modify an object in the picture. (P33); “maybe 
there should be a move function, where we keep the drawing the 
same but move it” (P40). Moreover, some participants also recom-
mended adding an undo feature, “Maybe a separate button to get 
back” (P31), or the ability to manually invoke Scones to redraw an 
object, “I’d like a way to ask the computer to redraw a specifc ob-
ject” (P3). These features could help participants express corrective 
feedback to Scones, potentially creating sketches that better match 
their intent. 

6.3.2 More Communicative Output. Some participants expected 
Scones to provide natural language output and feedback to their 
instructions. Some participants asked questions directly to elicit 
Scones’s capabilities: “In the foreground is a table, with a salad bowl 
and a jug of what may be lemonade. In the upper-left is a roughly-
sketched sun. Drifting down from the top-center is a box, tethered to a 
parachute., Did you need me to feed you smaller sentences? . . . ” (P38). 
P23 explicitly suggested users should be able to ask Scones ques-
tions to refne their intentions: “I would like the system to ask more 
questions if it does not understand or if I asked for several revisions. 
I feel that could help narrow down what I am asking to be drawn”. 
Other participants used praise between their sketching instructions, 
which could be used as a cue to preserve the sketch output and 
guide further iteration: “. . . Draw an airplane, Good try, Draw a table 
. . . ” (P1); “Draw a sun in the upper left corner, The sun looks good! 
Can you draw a hot air balloon in the middle of the page, near the 
top? . . . ” (P15). Providing additional natural language output and 
prompts from Scones could enable users to refne Scones’s under-
standing of their intent and learn about system capabilities. A truly 
conversational interface with a sketching support tool could pave 
the way for advanced mixed-initiative collaborative design tools. 

7 LIMITATIONS 
7.1 Underspecifed Masks 
While mask conditioning efectively guides the Object Generators 
in creating sketches with desired confgurations, they can be un-
derspecifed for the poses exhibited by objects of some classes. As 
shown in Figure 15, the mask of a right-facing body of a sitting cat 
can be similar to the face of a cat. The current mask generation 
algorithm is also not able to capture all the curves of the snake, 
resulting in ambiguous sketches of snakes. Future iterations of 
Scones can improve on the mask generation algorithms with more 
advanced techniques. 

7.2 Limited Variation of Sketches 
Scones currently supports a limited number of sketched object 
classes and poses due to its discrete representation of object confg-
urations used by the Composition Proposer. Future work should ex-
plore models conditioned on continuous representations of classes 
and poses from word embeddings for a fexible number of object 
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Clip Art Mask Generated Sketches

Figure 15: Sketches Generated by the Object Generator with 
Underspecifed Masks of the Snake and Cat Classes. 

classes. Moreover, Scones currently supports only limited stylistic 
modifcations (i.e., it may not support ‘sketch the leaves on the tree 
with more details’). A future iteration of the Composition Proposer 
could output a continuous embedding that contains objects’ class, 
pose, and stylistic information to fully support a wide range of 
sketches. 

7.3 Data Mismatch Between CoDraw and 
Target Task 

There are diferences between the task protocol used to collect the 
CoDraw dataset and the user interactions in Scones. The conver-
sation in CoDraw only ofers the Teller one chance to ‘peek’ at 
the Drawer’s canvas, which signifcantly decreases the number of 
modifcations to existing scene objects. As a result, Scones performs 
well at adding objects of correct classes at appropriate sizes, but 
is not as advanced at modifying or removing objects. Future work 
can explore data augmentation techniques, such as super-sampling 
randomly-perturbed rounds with modifcations, or adding removal 
rounds that mirror the addition of scene objects, to improve the 
ability of Scones to handle these tasks. 

8 DISCUSSION AND FUTURE WORK 
8.1 Scones-supported Games With a Purpose 

(GWAP) 
While Scones demonstrates a plausible system architecture for com-
posing scenes of limited scenarios, the limitations of object classes 
and modifcation capability are mainly due to the lack of large-
scale datasets of multimodal sketch modifcation. These datasets 
are considered to be difcult to collect due to the sketching skill 
requirement of crowdworkers [36]. We believe Scones can be used 
as a gateway towards creating such a dataset. By decomposing each 
scene into object components, crowdworkers would only need to 
sketch a single object in context, which was shown to be possible 
from the Quick, Draw! dataset. While the models currently are 
restricted to handling objects of a small set of poses and aspect 
ratios, we can prompt users to generate these objects freely, in turn 
expanding the variety of sketches in our dataset. Since Scones can 
automate sketch generation for other parts of the scene, this signif-
icantly improves the scalability of the game and makes it possible 
for Scones to be used as a data-collection system. Moreover, we also 
collect text instructions that could help to build a critique model 
for providing text-based sketch modifcation suggestions to users. 

8.2 Application to Professional Domains 
We believe the system architecture of Scones can be applied to 
professional domains if object and scene data for these domains 
become available. For instance, Scones could participate in the 
UI/UX design process by iteratively modifying UI design sketches 
according to design critique. To enable this interaction, we could 
consider complete UI sketches as ‘scenes’ and UI components as 
‘scene objects’. Scones could be trained on this data along with 
text critiques of UI designs to iteratively generate and modify UI 
mockups from text. While datasets of UI layouts and components, 
such as those presented in Swire [10], suggest this as a near possi-
bility, this approach may generalize to other domains as well, such 
as industrial design. Future work in adapting our system to new 
domains could beneft from fne-tuning pre-trained models in the 
current implementation of Scones. 

9 CONCLUSION 
In this paper, we introduced Scones, a machine-learning-driven 
system that generates scenes of sketched objects from text instruc-
tions. Scones consists of two stages, a Composition Proposer and a 
set of Object Generators, to compose sketched scenes of multiple 
objects that encode semantic relationships specifed by natural lan-
guage instructions. We establish state-of-the-art performance for 
the text-based scene modifcation task, and introduce mask con-
ditioning as a novel component in the Object Generators, which 
enables fner-grained control of object poses in sketch output. With 
Scones, users can interactively add and modify objects in sketches 
with inferred operations (e.g., transforming, moving, refecting). 

In an exploratory user evaluation, we found participants enjoyed 
working with Scones and were satisfed with the output sketches it 
produced. Most participants contributed hand-drawn sketches dur-
ing the activity, motivating the potential for Scones to be used as a 
Game With A Purpose (GWAP) for collecting end-to-end sketching 
critique and modifcation data. 

We see Scones as a step towards design support interfaces with 
tight human-in-the-loop coupling, providing an entirely new means 
for creative expression and rapid ideation. We are excited to con-
tinue designing for this future of design, art, and engineering. 
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