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ABSTRACT
Our perception of our surrounding environment is limited by
the constraints of human biology. The field of augmented
perception asks how our sensory capabilities can be usefully
extended through computational means. We argue that spa-
tial awareness can be enhanced by exploiting recent advances
in computer vision which make high-accuracy, real-time ob-
ject detection feasible in everyday settings. We introduce
HindSight, a wearable system that increases spatial awareness
by detecting relevant objects in live 360-degree video and
sonifying their position and class through bone conduction
headphones. HindSight uses a deep neural network to locate
and attribute semantic information to objects surrounding a
user through a head-worn panoramic camera. It then uses
bone conduction headphones, which preserve natural auditory
acuity, to transmit audio notifications for detected objects of
interest. We develop an application using HindSight to warn
cyclists of approaching vehicles outside their field of view
and evaluate it in an exploratory study with 15 users. Partici-
pants reported increases in perceived safety and awareness of
approaching vehicles when using HindSight.
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INTRODUCTION
The human visual system has both biological and cognitive
constraints. Our vision spans a usable field of roughly 114
degrees [14], and our anatomy restricts our sharpest, foveal
vision to a field of only 5.2 degrees [40]. Cognitively, as we be-
come absorbed in a task, our “locus of attention” narrows [33];
i.e., we tune out external stimuli, increasing our focus but
possibly drowning out important events such as alarms or en-
vironmental dangers. Interfaces which can redirect a user’s
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Figure 1. HindSight uses a neural network to detect objects from live,
ego-centric 360-degree video, a filter bank to extract relevant ones, and
a application-specific sonification program to convey results to a user.

attention to these overlooked stimuli have the potential to
prevent serious accidents. Our research goal is to augment
real-time spatial awareness for objects that are outside of a
person’s visual field.

Some approaches substitute all information for specific senses–
e.g., by using a head-mounted display to show a LIDAR point
cloud [25] or a live 360-degree video stream [2]. Repurposing
the visual system is potentially powerful, but such systems are
not easily integrated into daily activities because they require
an adaptation period before use and can create hurdles in social
interactions. We seek to develop a system that enhances spatial
awareness by redirecting attention to objects outside a user’s
visual field without impeding natural senses.

We introduce HindSight, a wearable system that increases spa-
tial awareness by detecting relevant objects in live, ego-centric
360-degree video and sonifying their location and properties
through bone conduction headphones. Our approach draws
upon advances in computer vision to identify points of interest
in a user’s surroundings, and work in delivering continuous
feedback for physical tasks to notify the user when necessary
to redirect their attention.

HindSight streams 360-degree video from a head-worn camera
to a real-time object detection neural network running on a
laptop worn in a backpack (Figure 2). The system filters the
neural network’s output and picks the most relevant objects
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Figure 2. HindSight uses a spherical camera mounted to a bike helmet
to capture a user’s surroundings. Video is streamed to a laptop worn in
a backpack.

for the application. These objects are sonified, conveying at-
tributes such as their type, location, and velocity. The user
hears audio through Bluetooth wireless bone conduction head-
phones, which transmit vibrations directly through the skull.
The key benefit of using bone conduction is it leaves the ears
unobstructed, enabling retention of normal auditory acuity.

We develop an application for HindSight: a program to aug-
ment cyclists’ sensory ability by warning users of vehicles
which are approaching in a potentially dangerous way. We cal-
culate potential danger by attributing momentum and direction
data to oncoming vehicles outside the cyclist’s field of view.
The momentum and direction data of vehicles approaching
the cyclist are used to calculate a directional “danger” metric,
which is sonified by modulating beeps using panning (to indi-
cate direction) with tempo and pitch (to indicate danger). We
provide a technical evaluation of our system to measure its
precision and the window of usable time a cyclist has to react
to its output. On average, we find HindSight detects poten-
tially unsafe approaching vehicles 1.89 seconds (σ = 0.40) s
before they would hit the bicycle.

We conduct an exploratory user evaluation with 15 partici-
pants to determine how users perform with our system. When
comparing our system to the control condition, users reported
perceived increases in safety (µ = 4.00,σ = 0.82), time to re-
act (µ = 3.73,σ = 0.57), comfort (µ = 3.47,σ = 0.96), and
awareness (µ = 3.53,σ = 0.96), on a 5-point Likert scale.
Several participants noted our system detected potential dan-
gers they would have otherwise missed: “[HindSight could]
sense the danger from the views that people not normally see”
(P4). Open-ended feedback revealed areas for potential im-
provement: “If it could detect danger slightly (just slightly)
sooner, that would be better” (P14). On a 5-point Likert scale,
users expressed they would use the system during their real
commutes if it was available (µ = 3.87,σ = 0.96).

In summary, we contribute: 1) The HindSight real-time com-
puter vision system for detecting and sonifying objects of
interest in 360-degree body-worn video; 2) an application of
Hindsight for augmenting cyclists’ spatial awareness; 3) A
technical evaluation and exploratory evaluation of this appli-
cation.

RELATED WORK
HindSight builds on prior work in three primary areas: devices
that enhance spatial awareness, systems which provide real-
time feedback for physical tasks, and tools for interpreting
360-degree video.

Enhancing Spatial Awareness
Devices which enhance spatial awareness ingest information
from a user’s surroundings, process it into a meaningful repre-
sentation, and output it via visual, audio, or haptic displays.

Augmenting Field of View
We are inspired by systems such as FlyViz, which augments
a user’s field of view by displaying reprojected 360-degree
panoramic video into a Head-Mounted Display (HMD) [2].
FlyViz effectively remaps a user’s surroundings to their visual
field, but requires an adaptation period before it can be used
comfortably. The Skully motorcycle helmet [42] projects a
rear-facing camera feed onto a transparent HMD. LiDARMAN
takes this idea further by projecting a 3D point cloud from
a head-mounted Lidar scanner into an HMD [25]. Closely
related to our work is SpiderVision, which blends front and
rear-facing video feeds into an HMD based on motion detected
behind the user [10]. Rather than use motion to trigger addi-
tional visual input, HindSight identifies objects around a user
and determines if they are important enough to redirect the
user’s attention. HMD-based solutions face multiple hurdles
to real-world use. First, HMDs have limited resolution and
field of view compared to natural human vision. Second, so-
cial acceptability of their continual use is not yet established.
Finally, some users additionally experience virtual reality sick-
ness when using VR headsets and HMDs [26]. In contrast
with this prior work, while we us an HMD as an experimental
apparatus in our exploratory study, HindSight exclusively uses
audio for output during use.

Assistive Technology
Assistive devices for the visually impaired ingest visual or spa-
tial data and encode this information into a different sensory
output, such as audio or vibrotactile displays.

Systems to aid the visually impaired often employ sonification
techniques to help users create a mental representation of their
surroundings. As early as 1974, Sonar has been used to sonify
obstacles in front of a user as a navigation aid [16]. Depth
and color of objects in a scene can be sonified with rich audio,
such as orchestral instruments, [11]. We draw upon this work
to develop our sonification framework, but focus on objects
outside of the user’s visual field. HindSight is not designed to
replace the visual system, but augment its capabilities.

Varying degrees of computational intelligence can be used to
extract higher-level information from images, from relying



on remote human assistance to on-device or cloud-based ma-
chine learning tools. VizWiz uses on-demand, crowdsourced
support to answer visual questions for pictures taken from a
smartphone [3]. Computer vision algorithms can help users
discriminate objects [9], locate visual markers [46], and de-
scribe scenes with machine-generated natural language [44].
Depth cameras can be used to create an interactive map of the
user’s surroundings [19] and identify obstacles in real-time,
such as unoccupied chairs and walls [45]. HindSight uses
machine learning based object detection to identify objects
outside of a user’s visual field and alert them when necessary.
The goal of HindSight is not to show all object information,
but only relevant objects which require attention.

Enhancing Awareness in Traffic
Our cycling application builds off related work in increasing
awareness of traffic situations. Projected AR displays have
been used to alert other drivers of a cyclist [15, 5] and dis-
play a “safety envelope” where others may pass the bicycle
[7]. Audio [35, 18] and haptic [8, 1] feedback can increase
driver awareness of other vehicles. Sonification can increase
detectability of approaching vehicles in environments with
background noise [17, 22], especially in the case of quiet
electric vehicles [24, 23]. Diedrichs and Parizet separately
describe design principles for sonifying approaching vehicles,
such as amplitude modulation, pitch, and rhythm [8, 31]. Hind-
Sight leverages these design principles to generate audio to
alert the user of oncoming vehicles outside their visual field.

Real-Time Feedback for Physical Tasks
Actions taken in the physical world can entail a sense of risk,
i.e., actions are often irreversible, and may potentially harm
the user if performed incorrectly [20]. HindSight operates in
the physical world, and our cycling application exhibits this
type of risk. We are inspired by digital fabrication devices that
provide real-time feedback to reduce or mitigate risk.

Devices can make users aware of variables that are relevant
to a task but not readily perceivable by a person. Projected
AR visualizations can reveal the otherwise invisible forces in-
side CNC machines [30] or warn users when they are drilling
too far into a surface [37]. Haptic feedback can alert users
to take corrective action when cutting a block of material if
they are approaching the edges of a predetermined model [47].
HindSight draws upon the metaphor of using real-time feed-
back to display variables in the environment and suggest the
user take corrective action. In particular, our cycling applica-
tion provides audio feedback to redirect the user’s attention to
potentially dangerous situations, prompting the user to take
corrective action if necessary.

Exploring and Interpreting 360-degree Video
360-degree video captures information from the camera’s en-
tire surrounding area, which can be explored by users manually
or interpreted with computer vision algorithms. Research sys-
tem have allowed users to annotate prerecorded 360-degree
video [32] or explore streaming video in real-time from a
head-worn camera array [28]. Computer vision techniques
have been used to recognize the faces of speakers in 360-
degree videos and generate a simulated “multi camera” output

[36]. Pano2Vid generalizes this approach, simulating human
motion of an artificial camera to track areas of interest in 360-
degree video [41]. Deep neural networks have also been used
to correct skew in 360-degree video [43]. HindSight utilizes
computer vision techniques to detect objects in 360-degree
video and requires a 360-degree camera to dynamically adjust
the analyzed field of view when head orientation changes from
travel direction, i.e., the user does not look straight ahead.

HindSight uses monocular, optical sensing to detect vehicles.
This is one of several possible techniques that has been used
in the literature [38, 27]. One distinguishing feature of our
approach is that we use a panoramic camera which captures
the relative angle of each pixel, yielding accurate direction
information for detected vehicles.

HindSight DESIGN CONSIDERATIONS
At a high level, HindSight seeks to enhance the spatial aware-
ness of users while preserving their ability to rely on un-
augmented sensory input. Our technique was guided by sev-
eral overarching guidelines:

Do not impede natural sensory input: For safety and social
acceptability, we aim to preserve real-world sensory input.
This precludes uses of opaque HMDs and suggests audio or
haptic displays. However, audio stimuli that block out environ-
mental sound are not appropriate. To satisfy these guidelines,
we rely on delivering audio notifications through bone conduc-
tion headphones, which leave the ear canals unobstructed. It is
possible for users to perform auditory and visual tasks at the
same time [12], so we believe audio to be a proper interface
for a warning system for bicycle users.

Importantly, cyclists may not always be able to rely on natu-
ral audio cues, e.g., in dense traffic or in urban areas where
sound is reflected from multiple facades. In these situations,
HindSight could provide additional, resolvable audio cues.

Provide real-time interpretation: Extracting higher-level
information from a scene can provide more concise, seman-
tically meaningful information to users. We use a computer
vision pipeline to recognize objects in the environment and
only sonify detected objects that are of critical importance.

Be conservative in information delivery: The system should
only engage the user when important and necessary. The level
of display should be proportional to the importance of the
message, i.e., ramp up the level of warning with the level of
danger. Our sound design is further informed the particulari-
ties of bone conduction headphones.

Designing Audio for Bone Conduction
Using bone conduction as our information display poses sev-
eral design challenges over traditional headphones because
audio does not enter the user’s ear canal, but is instead trans-
mitted through the user’s skull through vibrations. The the
primary benefit is that bone conduction headphones can be
worn safely in situations where the users must still use their
ears as an important channel for information.

The primary goal of our sound design for our cycling applica-
tion is to provide a clear auditory message to the user of our



system that there is a danger in their vicinity. We design the
audio such that it can transmit three key dimensions of infor-
mation to the user: direction, proximity, and type of danger.
We use Hermann et al.’s sonification framework [12] together
with principles from SAFERIDER [8] to inform our design
decisions, as described below.

Parameterizing Information
Auditory displays fall into the broad categories of alarms,
status indication, data exploration, and entertainment [12].
HindSight is an alarm system, because its primary purpose is
to indicate the presence of a dangerous object. HindSight has
properties of safety auditory displays, which prompt for cor-
rective action, and imminent auditory displays, which alert
time-critical corrective action is needed [8].

We map our three primary dimensions of information (direc-
tion, proximity, and type of danger) in the following ways:

Direction is mapped to directional audio. By mapping the
direction of the dangerous object to directional audio, we aim
to assist the user in localizing that object so that they can re-
spond to it appropriately. Because of the limited effectiveness
of using binaural audio with bone conduction headphones (de-
scribed below), we use panning to convey spatial information.

Distance to the detected object is mapped to tempo and
pitch. We take inspiration from parking assist and cross traffic
alert systems in automobiles, which emit a sequence of beeps
of increasing tempo as the car is approaching obstacles (or vice
versa). We play the given sound at a faster rate and increase
its pitch the closer an object is to the user. This is chosen to
create a sense of urgency in the user as the object approaches,
reflecting the need for time-critical corrective action [8].

Types of objects are mapped to different timbres. Categor-
ical types of data should be represented by changing acoustic
variables like timbre. This makes it easier for users to isolate
different sounds and still resolve the direction of these sources.
The pitches of the sounds we play range between 500Hz and
2000Hz, proportional to an object’s danger level. This range
transmits clearly using our bone conduction headphones, and
the 2000Hz pitch has been recommended for urgent safety
indicators [8].

Only Show Two Objects at Once Timbre and directional
audio are two of the best ways to help users resolve multiple
simultaneous sound sources [12]. However, we found it is
easy to get overwhelmed with information when more than
two moving objects are represented with audio. Therefore,
we chose to limit our system to only display up to two most
dangerous objects, to limit the amount of cognitive load our
system places on a user.

We also design for several particularities of bone conduction:

Exploit the Boundary between Haptics and Audio Lower
frequencies behave almost haptically on bone conduction head-
phones, providing vibrating sensations at the contact points
with the user’s head. We exploit this property by overlaying
low frequency sounds in our audio to help direct the user’s
attention to the direction of the audio.

Figure 3. Detected objects at intermediate filtering stages of HindSight:
(1) The neural network outputs bounding boxes of detected objects. (2)
Objects are tracked frame-to-frame. (3) Only objects moving nearer to
the user are kept. (4) Only object approaching the user are kept.

Use Panning Instead of Binaural Spatialization Standard
audio spatialization algorithms do not work well for bone con-
duction and it is difficult for users to resolve the direction
of spatialized audio. This is due to the fact that most audio
spatialization software uses Head-Related Transfer Functions
(HRTF) to determine how much audio should go to each ear.
HRTFs are calculated based on a model of the user’s ear and
head size, and assume that audio is entering through the ear
canal. In our application, audio is passed to the ear drum
through the skull. Because humans skulls have different acous-
tic properties, existing HRTFs are not appropriate [6].

As a workaround to this limitation, we lower the dimension of
data by instead panning the audio between the left and right
channels of the bone conduction headphones. This provides
reasonable directional feedback (users can still resolve the
general direction of danger) at the cost of not allowing as
many unique angles of direction.

SYSTEM ARCHITECTURE
Our system consists of a 360 degree video camera attached
to a bicycle helmet, connected via USB to a laptop in the
user’s backpack. The laptop is connected to a pair of bone
conduction headphones via bluetooth.

Image Acquisition
We acquire a stream of 1280 x 720 pixel equirectangular im-
ages at 15Hz using a Ricoh Theta S camera and process them
using OpenCV.

The equirectangular image format projects a spherical image
onto a rectangular image by mapping latitude coordinates
of the spherical image directly to x pixel coordinates, and
longitude values directly to y pixel coordinates [39]. A major



downside to this format is that the image distorts near the
poles, but minimizes distortion near the equator.

To obtain the best classification performance, we perform
some processing on the frame of video before passing it to
our object detector. For our application, the top and bottom
27° of the image generally contain no useful data (the user’s
helmet and the sky) and are removed. The rest of the image
is cut into three parts to produce nearly square images, which
minimizes aspect ratio distortion and increases performance
with our object detector. These partitions overlap slightly to
aid resolving objects which traverse their boundaries.

Object Detection
We use the YOLOv2 realtime object detection framework [34]
because it provides accurate, low latency predictions. We
additionally considered SSD [21], which achieved similar per-
formance, but with higher latency on our particular hardware.

Using pretrained model weights, YOLOv2 is capable of classi-
fying 80 labels, several of which are traffic related: car, truck,
bus, bicycle, person, stop sign, traffic light. The output from
this step is a list of bounding boxes, labels, and confidence
values. The object detector is generalizable to multiple classes
of objects through retraining on example images of desired
classes. Classification takes about 50 ms when using the down
sampled input images described earlier.

All classification is done in real time on a laptop carried in the
user’s backpack. The laptop is an Origin EON17-SLX with
an Intel i7-6700K 4.0 GHz processor, 16GB DDR4 RAM,
and a GeForce GTX 980 video card with 8GB DDR5 RAM
running Windows 10. Software used are Python 3.6, Tensor-
flow with CUDA extensions enabled, and OpenCV 3.2. The
high-performance GPU of the laptop is critical in order to run
a deep neural network such as YOLOv2 in real time.

Object Tracking
Output from YOLOv2 provides us with no frame to frame
coherence of objects. Frame to frame tracking is important
because we wish to filter objects based on their behavior. We
developed a simple and fast algorithm for approximating the
most likely bounding box for a given object between two
frames, with an acceptable amount of accuracy. Our algo-
rithm greedily merges weighted object bounding boxes over a
sequence of frames, “remembering” previous merges.

Object Filtering
Several filters are applied to the set of tracked objects to narrow
down which objects the user might find the most important.
The type of filtering applied depends heavily on the application
that the system is used for. The following filters are used for
the bicycle in traffic scenario. For each filter, we manually
count falsely identified dangerous objects during a 21-second
training video clip and report the number of false positives
(Objects which are falsely tracked and reported as dangerous).

Only Accept Vehicles Outside the User’s Visual Field
Our first filter eliminates objects irrelevant to cycling in traffic
from consideration (e.g., toasters, airplanes, clocks). We also
eliminate any objects that are in the front 110 degrees of the

Figure 4. HindSight only notifies users of objects which are approaching
and outside of their field of view. We approximate the human visual field
to 110◦.

user’s visual field (slightly less than human peripheral vision).
This is trivially calculated because the camera position tracks
the user’s gaze, as a head-stabilized configuration [4].

Only Display Growing Objects
Objects whose bounding boxes are decreasing in size over
time can be assumed to be moving away from the user, and
likely pose no danger. We calculate the square root of the
area of each bounding box over a time period of 10 frames
( 300 ms) of video and fit a linear function to approximate
the growth of the bounding box. If the slope of this line is
positive, then the area of the box is trending larger, and the
object is coming closer to the user. Any object with a negative
area-growth slope is removed from consideration. The growth
filter reduces the number of false positives from 122 (vehicle
filter only) to 46 in our sample data.

Orientation Filtering
For our application, objects that are approaching the user from
behind pose the most risk, and any object that is moving away
from the user in their direction of travel most likely passed
by them. We thus reject objects which are not traveling in the
direction of the user from behind them. The orientation filter
reduces the number of false positives to 4 in our sample data.

We determine the latitude of an object by considering its center
point and subtract 180 from it to determine its angle from the
rear of the user. Then we take the absolute value of this to
determine absolute angle from the rear of the user.

^user = abs(^ob ject −180)

We fit a linear function to these values over a window of 10
video frames, in parallel with the object growth filter (the
orientation filter does not introduce additional delay). If the
slope is positive, the object is most likely moving toward the
user from behind. We filter out any object with a negative
slope from consideration, leaving only objects moving in the
direction that the user is looking. An IMU attached to the
user’s helmet can base this calculation on the direction of travel
as opposed to the direction the user is facing by offsetting the
center point (180°) by the head orientation value.



Figure 5. We calculate the system detection time tdetect using the rela-
tive velocity of the car and bicycle~vcar −~vbike and by finding the average
detection distance ddetect of our system. Margin of safety tmargin is calcu-
lated using treact = 1.6 s from Olson and Sivak [29].

Removing Additional False Positives
We apply a final filter that requires an object to have made it
through the previous filters for at least 3 frames. This mini-
mizes briefly appearing misclassfied objects, as well as any
object that erroneously passed through the set of filters. This
provides less distractions for the user, so they don’t need to
divert attention towards these false positives. The averaging
filter reduces the number of false positives to only 1 (a parked
car) in our training video sample.

After all filters are applied, we calculate a danger metric that
is roughly proportional to each object’s momentum. This is
equal to an approximation of the object’s mass times the rate
at which the bounding box is growing.

Di = argmax
x

(Mx,iVx,i)

Where Di is the most dangerous object for frame i, Mx,i is
the approximate mass, and Vx,i is the object’s bounding box
growth rate in frame i.

Audio Output
Output from the filtering process goes into an audio system that
synthesizes and spatializes sounds based on which objects are
considered the most dangerous. Audio is sent over Bluetooth
to AfterShokz Trekz Titanium bone conduction headphones.

Sounds played to the user were authored in FL Studio 12,
a professional digital audio workstation. A virtual loopback
MIDI interface, loopMIDI, was loaded onto the laptop to allow
our software to communicate with FL Studio. Custom MIDI
control messages were specified to allow our software to start,
stop, and spatialize various sounds. FL Studio listens for
these messages and controls audio playback accordingly. The
benefits of this approach are the robustness it provides when
trying different user interfaces. Any software that can listen to
MIDI can respond to our system, providing a many ways our
system can connect to various actuators.

TECHNICAL EVALUATION
We perform a technical evaluation to characterize the precision
of our system and the margin of safety it provides to users
with the cycling application. For test data, we run our system
on 8 sample videos from a cyclist’s point of view in traffic

Figure 6. HindSight provides adequate time to react when vehicles ap-
proach the user at or under vcrit = 8.62± 1.24 m/s (green fill, top left),
assuming a baseline reaction time of treact = 1.6 s. The points × are detec-
tion distances measured from system use. The isodistance curve is fitted
from the average of the distances.

situations. There are two main classes of these videos: 5
of them have a car approaching roughly 15 mph (24 km/h)
relative to the bicycle, the other 3 have vehicles moving the
same speed as the bicycle.

We use a pretrained model for our object detector, which has
been characterized by its creators to have a Mean Average Pre-
cision (mAP) 78.6 [34]. Once objects have been tracked and
filtered, they remain detected by the system with a confidence
of 89.7% per frame over our training data.

We define the “margin of safety” tmargin of our system as the
difference in time between when HindSight detects a poten-
tially dangerous vehicle and a baseline reaction time treact to
avoid accidents in traffic. We compute tmargin by assuming a
constant relative velocity between the bicycle and an approach-
ing vehicle vcar − vbike and determining the average distance
ddetect at which HindSight detects objects (Figure 5).

As intended, the cars moving the same speed as the bicycle
in the 3 videos are not detected by our system because of the
bounding box growth filter. For the remaining 5 videos, we
select the first frame where our system detects a dangerous car
and visually determine how far from the bicycle the detected
car is. To determine the average detection distance ddetect ,
we assume an average car length of 4.7 meters and constant
relative velocity vcar − vbike of 6.7 m/s (15 mph).

On average, the system detects the car 1.89 seconds (σ =
0.40 s) before the car would hit the bicycle. These values were
determined by observing the videos and counting the number
of frames from the time that the dangerous object is detected
to the time it would hit the user.

We determine the margin of safety for our system by plotting
detection time values against approximate relative velocity
(Figure 6). Relative velocity is calculated by dividing the
distance the vehicle needs to travel to hit the bicycle by the
amount of time it takes the vehicle to reach that point. An



inverse function is fit to these points to generate an isodistance
curve that represents the average distance our system detects a
dangerous vehicle.

t(v) =−0.65 s+
19.4±2.8 m

v m/s

Assuming a maximum1 baseline reaction time of 1.6s to an
unexpected roadway obstacle tcrit [29], we can determine the
maximum speed that a car can be moving relative to the user
for our system to provide enough time to react, vcrit .

vcrit = v(treact) =
19.4±2.8 m
(1.6)+0.65 s

= 8.62±1.2 m/s

Therefore, our system can operate safely in situations where
nearby vehicles are traveling at most 8.62 m/s (19.28 mph,
31.03 km/h) relative to the bicycle. Assuming an average
bicycle speed of 10 mph (16 km/h) means HindSight can
currently handle situations where cars travel around 25 mph, a
common city speed limit, but that it may need earlier detection
to handle speed limits 35 mph (55 km/h) or above.

EXPLORATORY EVALUATION
To determine whether HindSight’s cycling application can
increase users’ awareness of vehicles approaching in a poten-
tially unsafe way, we conducted an exploratory evaluation.
We recruited 16 participants (11 male, 5 female) using uni-
versity mailing lists, all graduate students with experience
riding a bicycle. 13 participants had ridden a bicycle in traffic,
with most participants reporting only occasionally doing so
(µ = 2.7,σ = 1.4 on a 5-point Likert scale where 1 is "I have
never ridden a bicycle in traffic" and 5 is "I commute on a
bicycle 5+ times per week").

VR-Based Simulation
Because of the safety concerns of using a prototype system in a
live traffic situation, we developed a simulator to approximate
the experience of riding a bicycle in light traffic while using
HindSight. In our simulator, participants watch 360-degree
videos recorded from the point of view of a bicyclist via a head-
mounted VR display. Videos shown were not stereoscopic.
Video data is fed into HindSight to generate sounds from
prerecorded objects during trials.

Videos of live traffic situations were recorded by two re-
searchers in a suburban location with minimal vehicular and
pedestrian traffic. One researcher rode a bicycle with our sys-
tem running and capturing 360-degree video, while the other
drove a car to simulate various traffic situations. A studio-
quality stereo audio recorder was attached to the bicycle to
collect environmental sound with approximate spatial cues.

In the evaluation apparatus (Figure 7), a Unity2 application
plays the 360-degree videos and recorded audio back to an
1Olson and Sivak suggest once drivers are alerted of an upcoming
obstacle beforehand, 95th percentile perception-response time for the
same population drops to about 1.1 seconds
2https://unity3d.com/

Figure 7. Users wear an Oculus DK2 head-mounted display which plays
back 360-degree videos and manipulate a joystick to indicate areas with
potential danger. Bottom left: users see images of the scene through a
“virtual camera”

Oculus DK2 VR display and in-ear headphones. Users can
look around as the video plays using head orientation data
from the DK2’s IMU. This data is also used in calculations for
the HindSight Orientation Filter and for logging metrics for
the user evaluation. Audio cues for objects are played through
Trekz bone conduction headphones which are positioned in
front of the regular headphones on the participants’ skull.

A minor technical difference between using our system live
and in the simulator is that our 360-degree camera is capable
of recording video at 30 Hz, but only capable of streaming
video at 15 Hz. We expect this impact on results to be small.

Method
Users were instructed to sit in a kneeling chair to emulate
riding a bicycle and were fitted with our evaluation apparatus.
Users were then shown 9 distinct videos. The first, consis-
tent across all trials, was played twice–without and with the
HindSight system activated–to familiarize users with our ex-
perimental apparatus and system. The remaining 8 videos
were shown to the users in random order, and with Hind-
Sight randomly enabled for each. This allowed us to obtain a
fair distribution of results for each video with a roughly even
number of users trying each video with and without HindSight .
All sessions lasted under 30 minutes, and each participant suc-
cessfully completed the evaluation. One participant’s results
were omitted due to a technical error which caused their data
to not be logged.

During each video, participants were instructed to point a
provided joystick towards the area where they considered the
most potential danger was in the scene, if it existed. At the end
of the evaluation, users were asked to fill out an exit survey.
Questions were included open-ended answers and 5-point
Likert scales (1 = “Strongly Disagree”, 5 = “Strongly Agree”).
Likert scale questions were phrased as follows: (Awareness)
The system identified dangerous situations I would NOT have
noticed without it, (Comfort) I felt more comfortable when the
system was activated, compared to when it was not, (Safety) I
felt safer when the system was activated, compared to when
it was not, (Stress) I felt LESS stressed when the system was
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Figure 8. Participants were split on whether HindSight increased or
decreased their stress level.
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Figure 9. In the exit survey, participants generally gave positive sub-
jective ratings to HindSight on Likert scales asking about awareness,
comfort, safety and reaction time.

activated, compared to when it was not, (Reaction Time) I had
more time to react to situations when the system was activated,
compared to when it was not.

RESULTS AND DISCUSSION

Increased Perceived Awareness, Safety, and Reaction
In the exit survey, participants generally expressed positive
reactions to using our system (Figure 9). Participants reported
a perceived increase in awareness, (µ = 3.53,σ = 0.96), de-
fined as the ability to identify dangerous situations they oth-
erwise would not have noticed. Some participants explicitly
commented on this aspect in open responses: “It identified
passing cars before I could hear them passing by.” (P9);
and “[it did well on] Notifying cyclers of unseen approaching
objects, especially if they did not hear/anticipate it.” Par-
ticipants also reported a perceived increase in time to re-
act (µ = 3.73,σ = 0.57), comfort (µ = 3.47,σ = 0.96), and
safety (µ = 4,σ = 0.82) when using HindSight. Full distribu-
tions are shown in Figure 9.

Bimodal Response on Perceived Stress
Interestingly, we see a bimodal distribution for perceived stress
(Figure 8); for some HindSight increased stress, while for
others it decreased their perception of stress. P8, P9, and
P12 reported that our system generated some false positives,
which may have led to stress: “Too many false positives. False
positives might stress out the user” (P9). On the other hand,
P11 expressed the desire for richer feedback: “the system gave
me a decent view of everything, but I still felt like I wasn’t

Figure 10. Top two: averaged joystick angle for the “right turn” video
for users using and not using HindSight. Bottom two: averaged head
orientation for the “right turn” video. The red region shows when an
unexpected car appears behind the users. 7 out of 11 participants who
used HindSight reacted to the unexpected passing vehicle, while 0 out of
4 who did not use HindSight reacted.

getting the full view even when there was no danger.” More
training would let users become more familiar with the system
and could eliminate increased stress for some. As P1 notes,
(“I definitely became more accustomed to the system as time
went on”) and P5 remarks (“My lack of comfort or increased
stress with the system might’ve just been because I’m not used
to it. I recognize that it sometimes alerted me to things sooner
than I would’ve noticed them but it also felt a little distracting.
I would guess that this would get better with time”).

Quantitative Results are Inconclusive
Quantitative data from joystick and head movement did not
differ significantly between conditions. Using joystick move-
ment as a proxy for when users react to potentially dangerously
approaching cars, we found users who viewed videos without
our system reacted to a potentially unsafely approaching car in
(µ = 1.01 s,σ = 0.48 s), compared to users who used Hind-
Sight (µ = 1.04 sσ = 0.74 s). The 30 millisecond average
difference corresponds to the duration of a single video frame.

One possible explanation for the inconclusive results is that the
interpretations of “potential danger” was too subjective. Some
users moved the joystick towards parked cars to mark them
as “dangerous”, while others did not. Future work would need
to determine a more objective measure that can be interpreted
consistently by participants.



HindSight May Effectively Redirect Attention

When Users are Distracted
Although our quantitative results were inconclusive across the
set of videos, one datum of interest emerged for a video with
a distractor. Near the end of this clip, the bicycle slows down
to a stop at an intersection as a truck quickly stops and clears
the intersection. In the meantime, a car out of view quickly
stops alongside the bicycle from behind. Without HindSight ,
0 out of 4 turned towards the approaching car from behind,
whereas 7 out of 11 users using HindSight noticed the car, as
determined by head orientation data (Figure 10). This suggests
that our system may be especially effective at redirecting user
attention when they are distracted by other stimuli. This effect
should be further investigated in the future.

Feedback for Improving HindSight
Participants also offered suggestions for how they would im-
prove HindSight for use during their real commutes. As is,
participants rated the system favorably when asked if they
would use it during their real commutes on a 5-point Likert
scale (µ = 3.87,σ = 0.96). However, comments regarding the
audio output and occurrence of false positives suggest avenues
for further work.

Explore a Broader Space of Audio Cues
Many users remarked they would like to see revised audio cues:

“I’d want to see some more granularity in the alarm response
depending on the seriousness of the danger” (P11), “maybe it
could use a more distinct effect to denote the severity/distance
of the danger” (P5), “It could also be a measure of how fast or
how big the vehicle approaching is” (P2). Our current design
uses beeps which change in tempo and volume. Investing
additional resources in sound experience design could enrich
the experience of using our system.

Reduce Incidences of False Detections
Although we designed our filtering stages to reduce our sys-
tem’s false detections, users felt the remaining false positives
still impacted usability. “I heard some false positives from
parked cars receeding away from the bicycle” (P12), “Some-
times does send misleading beeps (got a few when no car was
immediately approaching)” (P7). Additional signal processing
will be needed to further reduce the number of false positives.
One proposal for future work is to incorporate the trajectory
of approaching objects with a dynamics model.

LIMITATIONS
As a prototype system, HindSight has limitations from engi-
neering constraints and the availability of technology. Our
exploratory study design also limits the types of claims and
generalizations we can currently make.

The resolution of our panoramic camera is relatively low.
Output is at 1280x720 at 15 fps streamed live. A rough cal-
culation shows using a 4K panoramic camera could provide
twice the detection distance of our 720p camera, increasing
users’ limited time to react.

Our system requires a 10 lb laptop to be worn. Our laptop
was chosen as a solution to balance portability and a high-end
GPU. Although it can be comfortably worn in a backpack,

it is not an ideal form factor. Developments in low-power,
small-footprint hardware designed for neural network com-
putations3 and considering mobile-optimized neural network
architectures [13] will likely address this limitation.

The Orientation Filter can reduce sensitivity to objects
approaching from directly behind. The Orientation Filter
works effectively in practice because cars commonly approach
the bicycle at an offset from the rear. However, objects which
are approaching directly from behind may be detected later
because their tracked x value does not change. Engineering
a dynamics model which estimates the trajectory of directly
approaching objects could resolve this limitation.

Object tracking does not merge bounding boxes. Our
frame to frame tracking algorithm could be improved by
adding a step where we merge bounding boxes if items are
likely the same at seams of image partitions.

Exploratory study has limited realism. A primary limita-
tion of the study is that participants had no agency to change
their trajectory or speed, as they were watching pre-recorded
videos. The most externally valid study design would be real-
world deployment in live traffic situations. However, before
exposing participants to potential risk in traffic, we believe
that a simulation study in virtual reality, where use of can be
evaluated safely, would be an appropriate next step.

CONCLUSION
We introduced HindSight, a wearable system that increases
spatial awareness by detecting relevant objects in live, ego-
centric 360-degree video and sonifying their attributes through
bone conduction headphones. HindSight draws upon advances
in computer vision and work in delivering continuous feedback
for physical tasks to identify points of interest in a user’s
surroundings and notify the user when necessary to redirect
their attention.

Our analysis suggests that at current detection performance,
bicyclists can be notified in time to react to dangers when
vehicles travel up 8.6 m/s faster than the cyclists. This margin
may be sufficient for many, but not all urban cycling situations.
Progress in camera technology and object classification can
further improve on this threshold.

In our exploratory study, we find HindSight increased users’
reported comfort, awareness, reaction time, and safety, and
identify potential avenues for future work, such as reducing
the recall rate of object detection and designing broader audio
experiences for users.

While our prototype is somewhat limited by the need to wear
a laptop with a powerful GPU, multiple hardware companies
are currently developing chips can run deep neural networks in
real time, which would make a truly portable solution feasible.

Beyond the domain of cycling, we believe that combining an
enhanced awareness of visual periphery with the rich semantic
understanding of objects and scenes from computer vision
techniques has the potential to enable an entire new class of
applications that improve on unaided human capabilities.
3https://developer.movidius.com/
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